mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-18 10:44:33 +08:00
02bd90d7c1
* Resolve numerous typos * Delete test.py * Run generate_notebooks * notebooks --------- Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
282 lines
7.7 KiB
Python
282 lines
7.7 KiB
Python
import gradio as gr
|
|
import math
|
|
from functools import partial
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from sklearn.cluster import (
|
|
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
|
|
)
|
|
from sklearn.datasets import make_blobs, make_circles, make_moons
|
|
from sklearn.mixture import GaussianMixture
|
|
from sklearn.neighbors import kneighbors_graph
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
plt.style.use('seaborn')
|
|
SEED = 0
|
|
MAX_CLUSTERS = 10
|
|
N_SAMPLES = 1000
|
|
N_COLS = 3
|
|
FIGSIZE = 7, 7 # does not affect size in webpage
|
|
COLORS = [
|
|
'blue', 'orange', 'green', 'red', 'purple', 'brown', 'pink', 'gray', 'olive', 'cyan'
|
|
]
|
|
assert len(COLORS) >= MAX_CLUSTERS, "Not enough different colors for all clusters"
|
|
np.random.seed(SEED)
|
|
|
|
|
|
def normalize(X):
|
|
return StandardScaler().fit_transform(X)
|
|
|
|
def get_regular(n_clusters):
|
|
# spiral pattern
|
|
centers = [
|
|
[0, 0],
|
|
[1, 0],
|
|
[1, 1],
|
|
[0, 1],
|
|
[-1, 1],
|
|
[-1, 0],
|
|
[-1, -1],
|
|
[0, -1],
|
|
[1, -1],
|
|
[2, -1],
|
|
][:n_clusters]
|
|
assert len(centers) == n_clusters
|
|
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.25, random_state=SEED)
|
|
return normalize(X), labels
|
|
|
|
|
|
def get_circles(n_clusters):
|
|
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
|
|
return normalize(X), labels
|
|
|
|
|
|
def get_moons(n_clusters):
|
|
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
|
|
return normalize(X), labels
|
|
|
|
|
|
def get_noise(n_clusters):
|
|
np.random.seed(SEED)
|
|
X, labels = np.random.rand(N_SAMPLES, 2), np.random.randint(0, n_clusters, size=(N_SAMPLES,))
|
|
return normalize(X), labels
|
|
|
|
|
|
def get_anisotropic(n_clusters):
|
|
X, labels = make_blobs(n_samples=N_SAMPLES, centers=n_clusters, random_state=170)
|
|
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
|
X = np.dot(X, transformation)
|
|
return X, labels
|
|
|
|
|
|
def get_varied(n_clusters):
|
|
cluster_std = [1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0, 2.5, 0.5, 1.0][:n_clusters]
|
|
assert len(cluster_std) == n_clusters
|
|
X, labels = make_blobs(
|
|
n_samples=N_SAMPLES, centers=n_clusters, cluster_std=cluster_std, random_state=SEED
|
|
)
|
|
return normalize(X), labels
|
|
|
|
|
|
def get_spiral(n_clusters):
|
|
# from https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
|
|
np.random.seed(SEED)
|
|
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, N_SAMPLES))
|
|
x = t * np.cos(t)
|
|
y = t * np.sin(t)
|
|
X = np.concatenate((x, y))
|
|
X += 0.7 * np.random.randn(2, N_SAMPLES)
|
|
X = np.ascontiguousarray(X.T)
|
|
|
|
labels = np.zeros(N_SAMPLES, dtype=int)
|
|
return normalize(X), labels
|
|
|
|
|
|
DATA_MAPPING = {
|
|
'regular': get_regular,
|
|
'circles': get_circles,
|
|
'moons': get_moons,
|
|
'spiral': get_spiral,
|
|
'noise': get_noise,
|
|
'anisotropic': get_anisotropic,
|
|
'varied': get_varied,
|
|
}
|
|
|
|
|
|
def get_groundtruth_model(X, labels, n_clusters, **kwargs):
|
|
# dummy model to show true label distribution
|
|
class Dummy:
|
|
def __init__(self, y):
|
|
self.labels_ = labels
|
|
|
|
return Dummy(labels)
|
|
|
|
|
|
def get_kmeans(X, labels, n_clusters, **kwargs):
|
|
model = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10, random_state=SEED)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_dbscan(X, labels, n_clusters, **kwargs):
|
|
model = DBSCAN(eps=0.3)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_agglomerative(X, labels, n_clusters, **kwargs):
|
|
connectivity = kneighbors_graph(
|
|
X, n_neighbors=n_clusters, include_self=False
|
|
)
|
|
# make connectivity symmetric
|
|
connectivity = 0.5 * (connectivity + connectivity.T)
|
|
model = AgglomerativeClustering(
|
|
n_clusters=n_clusters, linkage="ward", connectivity=connectivity
|
|
)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_meanshift(X, labels, n_clusters, **kwargs):
|
|
bandwidth = estimate_bandwidth(X, quantile=0.25)
|
|
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_spectral(X, labels, n_clusters, **kwargs):
|
|
model = SpectralClustering(
|
|
n_clusters=n_clusters,
|
|
eigen_solver="arpack",
|
|
affinity="nearest_neighbors",
|
|
)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_optics(X, labels, n_clusters, **kwargs):
|
|
model = OPTICS(
|
|
min_samples=7,
|
|
xi=0.05,
|
|
min_cluster_size=0.1,
|
|
)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_birch(X, labels, n_clusters, **kwargs):
|
|
model = Birch(n_clusters=n_clusters)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
def get_gaussianmixture(X, labels, n_clusters, **kwargs):
|
|
model = GaussianMixture(
|
|
n_components=n_clusters, covariance_type="full", random_state=SEED,
|
|
)
|
|
model.set_params(**kwargs)
|
|
return model.fit(X)
|
|
|
|
|
|
MODEL_MAPPING = {
|
|
'True labels': get_groundtruth_model,
|
|
'KMeans': get_kmeans,
|
|
'DBSCAN': get_dbscan,
|
|
'MeanShift': get_meanshift,
|
|
'SpectralClustering': get_spectral,
|
|
'OPTICS': get_optics,
|
|
'Birch': get_birch,
|
|
'GaussianMixture': get_gaussianmixture,
|
|
'AgglomerativeClustering': get_agglomerative,
|
|
}
|
|
|
|
|
|
def plot_clusters(ax, X, labels):
|
|
set_clusters = set(labels)
|
|
set_clusters.discard(-1) # -1 signifiies outliers, which we plot separately
|
|
for label, color in zip(sorted(set_clusters), COLORS):
|
|
idx = labels == label
|
|
if not sum(idx):
|
|
continue
|
|
ax.scatter(X[idx, 0], X[idx, 1], color=color)
|
|
|
|
# show outliers (if any)
|
|
idx = labels == -1
|
|
if sum(idx):
|
|
ax.scatter(X[idx, 0], X[idx, 1], c='k', marker='x')
|
|
|
|
ax.grid(None)
|
|
ax.set_xticks([])
|
|
ax.set_yticks([])
|
|
return ax
|
|
|
|
|
|
def cluster(dataset: str, n_clusters: int, clustering_algorithm: str):
|
|
if isinstance(n_clusters, dict):
|
|
n_clusters = n_clusters['value']
|
|
else:
|
|
n_clusters = int(n_clusters)
|
|
|
|
X, labels = DATA_MAPPING[dataset](n_clusters)
|
|
model = MODEL_MAPPING[clustering_algorithm](X, labels, n_clusters=n_clusters)
|
|
if hasattr(model, "labels_"):
|
|
y_pred = model.labels_.astype(int)
|
|
else:
|
|
y_pred = model.predict(X)
|
|
|
|
fig, ax = plt.subplots(figsize=FIGSIZE)
|
|
|
|
plot_clusters(ax, X, y_pred)
|
|
ax.set_title(clustering_algorithm, fontsize=16)
|
|
|
|
return fig
|
|
|
|
|
|
title = "Clustering with Scikit-learn"
|
|
description = (
|
|
"This example shows how different clustering algorithms work. Simply pick "
|
|
"the dataset and the number of clusters to see how the clustering algorithms work. "
|
|
"Colored circles are (predicted) labels and black x are outliers."
|
|
)
|
|
|
|
|
|
def iter_grid(n_rows, n_cols):
|
|
# create a grid using gradio Block
|
|
for _ in range(n_rows):
|
|
with gr.Row():
|
|
for _ in range(n_cols):
|
|
with gr.Column():
|
|
yield
|
|
|
|
with gr.Blocks(title=title) as demo:
|
|
gr.HTML(f"<b>{title}</b>")
|
|
gr.Markdown(description)
|
|
|
|
input_models = list(MODEL_MAPPING)
|
|
input_data = gr.Radio(
|
|
list(DATA_MAPPING),
|
|
value="regular",
|
|
label="dataset"
|
|
)
|
|
input_n_clusters = gr.Slider(
|
|
minimum=1,
|
|
maximum=MAX_CLUSTERS,
|
|
value=4,
|
|
step=1,
|
|
label='Number of clusters'
|
|
)
|
|
n_rows = int(math.ceil(len(input_models) / N_COLS))
|
|
counter = 0
|
|
for _ in iter_grid(n_rows, N_COLS):
|
|
if counter >= len(input_models):
|
|
break
|
|
|
|
input_model = input_models[counter]
|
|
plot = gr.Plot(label=input_model)
|
|
fn = partial(cluster, clustering_algorithm=input_model)
|
|
input_data.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
|
input_n_clusters.change(fn=fn, inputs=[input_data, input_n_clusters], outputs=plot)
|
|
counter += 1
|
|
|
|
demo.launch()
|