mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-15 02:11:15 +08:00
b4d9825409
Ported gradio website into gradio repository, now launched as a docker service from gradio/website
420 lines
24 KiB
Python
420 lines
24 KiB
Python
import unittest
|
|
import matplotlib.pyplot as plt
|
|
import gradio as gr
|
|
import numpy as np
|
|
import pandas as pd
|
|
import tempfile
|
|
import os
|
|
|
|
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
|
|
class OutputComponent(unittest.TestCase):
|
|
def test_as_component(self):
|
|
output = gr.outputs.OutputComponent(label="Test Input")
|
|
self.assertEqual(output.postprocess("Hello World!"), "Hello World!")
|
|
self.assertEqual(output.deserialize(1), 1)
|
|
|
|
|
|
class TestTextbox(unittest.TestCase):
|
|
def test_as_component(self):
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.outputs.Textbox(type="unknown")
|
|
wrong_type.postprocess(0)
|
|
|
|
def test_in_interface(self):
|
|
iface = gr.Interface(lambda x: x[-1], "textbox", gr.outputs.Textbox())
|
|
self.assertEqual(iface.process(["Hello"])[0], ["o"])
|
|
iface = gr.Interface(lambda x: x / 2, "number", gr.outputs.Textbox(type="number"))
|
|
self.assertEqual(iface.process([10])[0], [5])
|
|
|
|
|
|
class TestLabel(unittest.TestCase):
|
|
def test_as_component(self):
|
|
y = 'happy'
|
|
label_output = gr.outputs.Label()
|
|
label = label_output.postprocess(y)
|
|
self.assertDictEqual(label, {"label": "happy"})
|
|
self.assertEqual(label_output.deserialize(y), y)
|
|
self.assertEqual(label_output.deserialize(label), y)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
to_save = label_output.save_flagged(tmpdir, "label_output", label, None)
|
|
self.assertEqual(to_save, y)
|
|
y = {
|
|
3: 0.7,
|
|
1: 0.2,
|
|
0: 0.1
|
|
}
|
|
label_output = gr.outputs.Label()
|
|
label = label_output.postprocess(y)
|
|
self.assertDictEqual(label, {
|
|
"label": 3,
|
|
"confidences": [
|
|
{"label": 3, "confidence": 0.7},
|
|
{"label": 1, "confidence": 0.2},
|
|
{"label": 0, "confidence": 0.1},
|
|
]
|
|
})
|
|
label_output = gr.outputs.Label(num_top_classes=2)
|
|
label = label_output.postprocess(y)
|
|
self.assertDictEqual(label, {
|
|
"label": 3,
|
|
"confidences": [
|
|
{"label": 3, "confidence": 0.7},
|
|
{"label": 1, "confidence": 0.2},
|
|
]
|
|
})
|
|
with self.assertRaises(ValueError):
|
|
label_output.postprocess([1, 2, 3])
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
to_save = label_output.save_flagged(tmpdir, "label_output", label, None)
|
|
self.assertEqual(to_save, '{"3": 0.7, "1": 0.2}')
|
|
self.assertEqual(label_output.restore_flagged(to_save), {"3": 0.7, "1": 0.2})
|
|
with self.assertRaises(ValueError):
|
|
label_output = gr.outputs.Label(type="unknown")
|
|
label_output.deserialize([1, 2, 3])
|
|
|
|
def test_in_interface(self):
|
|
x_img = gr.test_data.BASE64_IMAGE
|
|
|
|
def rgb_distribution(img):
|
|
rgb_dist = np.mean(img, axis=(0, 1))
|
|
rgb_dist /= np.sum(rgb_dist)
|
|
rgb_dist = np.round(rgb_dist, decimals=2)
|
|
return {
|
|
"red": rgb_dist[0],
|
|
"green": rgb_dist[1],
|
|
"blue": rgb_dist[2],
|
|
}
|
|
|
|
iface = gr.Interface(rgb_distribution, "image", "label")
|
|
output = iface.process([x_img])[0][0]
|
|
self.assertDictEqual(output, {
|
|
'label': 'red',
|
|
'confidences': [
|
|
{'label': 'red', 'confidence': 0.44},
|
|
{'label': 'green', 'confidence': 0.28},
|
|
{'label': 'blue', 'confidence': 0.28}
|
|
]
|
|
})
|
|
|
|
|
|
class TestImage(unittest.TestCase):
|
|
def test_as_component(self):
|
|
y_img = gr.processing_utils.decode_base64_to_image(gr.test_data.BASE64_IMAGE)
|
|
image_output = gr.outputs.Image()
|
|
self.assertTrue(image_output.postprocess(y_img).startswith(""))
|
|
self.assertTrue(image_output.postprocess(np.array(y_img)).startswith(""))
|
|
with self.assertWarns(DeprecationWarning):
|
|
plot_output = gr.outputs.Image(plot=True)
|
|
|
|
xpoints = np.array([0, 6])
|
|
ypoints = np.array([0, 250])
|
|
fig = plt.figure()
|
|
p = plt.plot(xpoints, ypoints)
|
|
self.assertTrue(plot_output.postprocess(fig).startswith("data:image/png;base64,"))
|
|
with self.assertRaises(ValueError):
|
|
image_output.postprocess([1, 2, 3])
|
|
image_output = gr.outputs.Image(type="numpy")
|
|
self.assertTrue(image_output.postprocess(y_img).startswith("data:image/png;base64,"))
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = image_output.save_flagged(tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None)
|
|
self.assertEqual("image_output/0.png", to_save)
|
|
to_save = image_output.save_flagged(tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None)
|
|
self.assertEqual("image_output/1.png", to_save)
|
|
|
|
def test_in_interface(self):
|
|
def generate_noise(width, height):
|
|
return np.random.randint(0, 256, (width, height, 3))
|
|
|
|
iface = gr.Interface(generate_noise, ["slider", "slider"], "image")
|
|
self.assertTrue(iface.process([10, 20])[0][0].startswith("data:image/png;base64"))
|
|
|
|
|
|
class TestVideo(unittest.TestCase):
|
|
def test_as_component(self):
|
|
y_vid = "test/test_files/video_sample.mp4"
|
|
video_output = gr.outputs.Video()
|
|
self.assertTrue(video_output.postprocess(y_vid)["data"].startswith("data:video/mp4;base64,"))
|
|
self.assertTrue(video_output.deserialize(gr.test_data.BASE64_VIDEO["data"]).endswith(".mp4"))
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = video_output.save_flagged(tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None)
|
|
self.assertEqual("video_output/0.mp4", to_save)
|
|
to_save = video_output.save_flagged(tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None)
|
|
self.assertEqual("video_output/1.mp4", to_save)
|
|
|
|
|
|
class TestKeyValues(unittest.TestCase):
|
|
def test_as_component(self):
|
|
kv_output = gr.outputs.KeyValues()
|
|
kv_dict = {"a": 1, "b": 2}
|
|
kv_list = [("a", 1), ("b", 2)]
|
|
self.assertEqual(kv_output.postprocess(kv_dict), kv_list)
|
|
self.assertEqual(kv_output.postprocess(kv_list), kv_list)
|
|
with self.assertRaises(ValueError):
|
|
kv_output.postprocess(0)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = kv_output.save_flagged(tmpdirname, "kv_output", kv_list, None)
|
|
self.assertEqual(to_save, '[["a", 1], ["b", 2]]')
|
|
self.assertEqual(kv_output.restore_flagged(to_save), [["a", 1], ["b", 2]])
|
|
|
|
def test_in_interface(self):
|
|
def letter_distribution(word):
|
|
dist = {}
|
|
for letter in word:
|
|
dist[letter] = dist.get(letter, 0) + 1
|
|
return dist
|
|
|
|
iface = gr.Interface(letter_distribution, "text", "key_values")
|
|
self.assertListEqual(iface.process(["alpaca"])[0][0], [
|
|
("a", 3), ("l", 1), ("p", 1), ("c", 1)])
|
|
|
|
|
|
class TestHighlightedText(unittest.TestCase):
|
|
def test_as_component(self):
|
|
ht_output = gr.outputs.HighlightedText(color_map={"pos": "green", "neg": "red"})
|
|
self.assertEqual(ht_output.get_template_context(), {
|
|
'color_map': {'pos': 'green', 'neg': 'red'},
|
|
'name': 'highlightedtext',
|
|
'label': None
|
|
})
|
|
ht = {
|
|
"pos": "Hello ",
|
|
"neg": "World"
|
|
}
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = ht_output.save_flagged(tmpdirname, "ht_output", ht, None)
|
|
self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}')
|
|
self.assertEqual(ht_output.restore_flagged(to_save), {"pos": "Hello ", "neg": "World"})
|
|
|
|
def test_in_interface(self):
|
|
def highlight_vowels(sentence):
|
|
phrases, cur_phrase = [], ""
|
|
vowels, mode = "aeiou", None
|
|
for letter in sentence:
|
|
letter_mode = "vowel" if letter in vowels else "non"
|
|
if mode is None:
|
|
mode = letter_mode
|
|
elif mode != letter_mode:
|
|
phrases.append((cur_phrase, mode))
|
|
cur_phrase = ""
|
|
mode = letter_mode
|
|
cur_phrase += letter
|
|
phrases.append((cur_phrase, mode))
|
|
return phrases
|
|
|
|
iface = gr.Interface(highlight_vowels, "text", "highlight")
|
|
self.assertListEqual(iface.process(["Helloooo"])[0][0], [
|
|
("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")])
|
|
|
|
|
|
class TestAudio(unittest.TestCase):
|
|
def test_as_component(self):
|
|
y_audio = gr.processing_utils.decode_base64_to_file(gr.test_data.BASE64_AUDIO["data"])
|
|
audio_output = gr.outputs.Audio(type="file")
|
|
self.assertTrue(audio_output.postprocess(y_audio.name).startswith("data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA"))
|
|
self.assertEqual(audio_output.get_template_context(), {
|
|
'name': 'audio',
|
|
'label': None
|
|
})
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.outputs.Audio(type="unknown")
|
|
wrong_type.postprocess(y_audio.name)
|
|
self.assertTrue(audio_output.deserialize(gr.test_data.BASE64_AUDIO["data"]).endswith(".wav"))
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = audio_output.save_flagged(tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None)
|
|
self.assertEqual("audio_output/0.wav", to_save)
|
|
to_save = audio_output.save_flagged(tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None)
|
|
self.assertEqual("audio_output/1.wav", to_save)
|
|
|
|
def test_in_interface(self):
|
|
def generate_noise(duration):
|
|
return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16)
|
|
|
|
iface = gr.Interface(generate_noise, "slider", "audio")
|
|
self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64"))
|
|
|
|
|
|
class TestJSON(unittest.TestCase):
|
|
def test_as_component(self):
|
|
js_output = gr.outputs.JSON()
|
|
self.assertTrue(js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"')
|
|
js = {
|
|
"pos": "Hello ",
|
|
"neg": "World"
|
|
}
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = js_output.save_flagged(tmpdirname, "js_output", js, None)
|
|
self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}')
|
|
self.assertEqual(js_output.restore_flagged(to_save), {"pos": "Hello ", "neg": "World"})
|
|
|
|
def test_in_interface(self):
|
|
def get_avg_age_per_gender(data):
|
|
return {
|
|
"M": int(data[data["gender"] == "M"].mean()),
|
|
"F": int(data[data["gender"] == "F"].mean()),
|
|
"O": int(data[data["gender"] == "O"].mean()),
|
|
}
|
|
|
|
iface = gr.Interface(
|
|
get_avg_age_per_gender,
|
|
gr.inputs.Dataframe(headers=["gender", "age"]),
|
|
"json")
|
|
y_data = [
|
|
["M", 30],
|
|
["F", 20],
|
|
["M", 40],
|
|
["O", 20],
|
|
["F", 30],
|
|
]
|
|
self.assertDictEqual(iface.process([y_data])[0][0], {
|
|
"M": 35, "F": 25, "O": 20
|
|
})
|
|
|
|
|
|
class TestHTML(unittest.TestCase):
|
|
def test_in_interface(self):
|
|
def bold_text(text):
|
|
return "<strong>" + text + "</strong>"
|
|
|
|
iface = gr.Interface(bold_text, "text", "html")
|
|
self.assertEqual(iface.process(["test"])[0][0], "<strong>test</strong>")
|
|
|
|
|
|
class TestFile(unittest.TestCase):
|
|
def test_as_component(self):
|
|
def write_file(content):
|
|
with open("test.txt", "w") as f:
|
|
f.write(content)
|
|
return "test.txt"
|
|
|
|
iface = gr.Interface(write_file, "text", "file")
|
|
self.assertDictEqual(iface.process(["hello world"])[0][0], {
|
|
'name': 'test.txt', 'size': 11, 'data': 'aGVsbG8gd29ybGQ='
|
|
})
|
|
file_output = gr.outputs.File()
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = file_output.save_flagged(tmpdirname, "file_output", gr.test_data.BASE64_FILE, None)
|
|
self.assertEqual("file_output/0.pdf", to_save)
|
|
to_save = file_output.save_flagged(tmpdirname, "file_output", gr.test_data.BASE64_FILE, None)
|
|
self.assertEqual("file_output/1.pdf", to_save)
|
|
|
|
|
|
class TestDataframe(unittest.TestCase):
|
|
def test_as_component(self):
|
|
dataframe_output = gr.outputs.Dataframe()
|
|
output = dataframe_output.postprocess(np.zeros((2,2)))
|
|
self.assertDictEqual(output, {"data": [[0,0],[0,0]]})
|
|
output = dataframe_output.postprocess([[1,3,5]])
|
|
self.assertDictEqual(output, {"data": [[1, 3, 5]]})
|
|
output = dataframe_output.postprocess(pd.DataFrame(
|
|
[[2, True], [3, True], [4, False]], columns=["num", "prime"]))
|
|
self.assertDictEqual(output,
|
|
{"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]})
|
|
self.assertEqual(dataframe_output.get_template_context(), {
|
|
'headers': None,
|
|
'max_rows': 20,
|
|
'max_cols': None,
|
|
'overflow_row_behaviour': 'paginate',
|
|
'name': 'dataframe',
|
|
'label': None
|
|
})
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.outputs.Dataframe(type="unknown")
|
|
wrong_type.postprocess(0)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = dataframe_output.save_flagged(tmpdirname, "dataframe_output", output, None)
|
|
self.assertEqual(to_save, '[[2, true], [3, true], [4, false]]')
|
|
self.assertEqual(dataframe_output.restore_flagged(to_save), [[2, True], [3, True], [4, False]])
|
|
|
|
def test_in_interface(self):
|
|
def check_odd(array):
|
|
return array % 2 == 0
|
|
iface = gr.Interface(check_odd, "numpy", "numpy")
|
|
self.assertEqual(
|
|
iface.process([[2, 3, 4]])[0][0],
|
|
{"data": [[True, False, True]]})
|
|
|
|
|
|
class TestCarousel(unittest.TestCase):
|
|
def test_as_component(self):
|
|
carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease")
|
|
|
|
output = carousel_output.postprocess([["Hello World", "test/test_files/bus.png"],
|
|
["Bye World", "test/test_files/bus.png"]])
|
|
self.assertEqual(output, [['Hello World', gr.test_data.BASE64_IMAGE],
|
|
['Bye World', gr.test_data.BASE64_IMAGE]])
|
|
|
|
carousel_output = gr.outputs.Carousel("text", label="Disease")
|
|
output = carousel_output.postprocess([["Hello World"], ["Bye World"]])
|
|
self.assertEqual(output, [['Hello World'], ['Bye World']])
|
|
self.assertEqual(carousel_output.get_template_context(), {
|
|
'components': [{'name': 'textbox', 'label': None}],
|
|
'name': 'carousel',
|
|
'label': 'Disease'
|
|
})
|
|
output = carousel_output.postprocess(["Hello World", "Bye World"])
|
|
self.assertEqual(output, [['Hello World'], ['Bye World']])
|
|
with self.assertRaises(ValueError):
|
|
carousel_output.postprocess('Hello World!')
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = carousel_output.save_flagged(tmpdirname, "carousel_output", output, None)
|
|
self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]')
|
|
|
|
def test_in_interface(self):
|
|
carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease")
|
|
def report(img):
|
|
results = []
|
|
for i, mode in enumerate(["Red", "Green", "Blue"]):
|
|
color_filter = np.array([0, 0, 0])
|
|
color_filter[i] = 1
|
|
results.append([mode, img * color_filter])
|
|
return results
|
|
iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output)
|
|
self.assertEqual(
|
|
iface.process([gr.test_data.BASE64_IMAGE])[0], [[['Red',
|
|
''],
|
|
['Green',
|
|
''],
|
|
['Blue',
|
|
'']]])
|
|
|
|
|
|
class TestTimeseries(unittest.TestCase):
|
|
def test_as_component(self):
|
|
timeseries_output = gr.outputs.Timeseries(label="Disease")
|
|
self.assertEqual(timeseries_output.get_template_context(), {
|
|
'x': None, 'y': None, 'name': 'timeseries', 'label': 'Disease'
|
|
})
|
|
data = {'Name': ['Tom', 'nick', 'krish', 'jack'], 'Age': [20, 21, 19, 18]}
|
|
df = pd.DataFrame(data)
|
|
self.assertEqual(timeseries_output.postprocess(df),{'headers': ['Name', 'Age'],
|
|
'data': [['Tom', 20], ['nick', 21], ['krish', 19],
|
|
['jack', 18]]})
|
|
|
|
timeseries_output = gr.outputs.Timeseries(y="Age", label="Disease")
|
|
output = timeseries_output.postprocess(df)
|
|
self.assertEqual(output, {'headers': ['Name', 'Age'],
|
|
'data': [['Tom', 20], ['nick', 21], ['krish', 19],
|
|
['jack', 18]]})
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = timeseries_output.save_flagged(tmpdirname, "timeseries_output", output, None)
|
|
self.assertEqual(to_save, '{"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], '
|
|
'["jack", 18]]}')
|
|
self.assertEqual(timeseries_output.restore_flagged(to_save), {"headers": ["Name", "Age"],
|
|
"data": [["Tom", 20], ["nick", 21],
|
|
["krish", 19], ["jack", 18]]})
|
|
|
|
|
|
class TestNames(unittest.TestCase):
|
|
def test_no_duplicate_uncased_names(self): # this ensures that get_input_instance() works correctly when instantiating from components
|
|
subclasses = gr.outputs.OutputComponent.__subclasses__()
|
|
unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses])
|
|
self.assertEqual(len(subclasses), len(unique_subclasses_uncased))
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|