mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-15 02:11:15 +08:00
76 lines
3.9 KiB
Python
76 lines
3.9 KiB
Python
import unittest
|
|
import pathlib
|
|
import gradio as gr
|
|
|
|
"""
|
|
WARNING: These tests have an external dependency: namely that Hugging Face's Hub and Space APIs do not change, and they keep their most famous models up.
|
|
"""
|
|
|
|
class TestHuggingFaceModelAPI(unittest.TestCase):
|
|
def test_gpt2(self):
|
|
interface_info = gr.external.get_huggingface_interface("gpt2", api_key=None, alias=None)
|
|
self.assertEqual(interface_info["fn"].__name__, "gpt2")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Textbox)
|
|
|
|
def test_distilbert_classification(self):
|
|
interface_info = gr.external.get_huggingface_interface("distilbert-base-uncased-finetuned-sst-2-english", api_key=None, alias="sentiment_classifier")
|
|
self.assertEqual(interface_info["fn"].__name__, "sentiment_classifier")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
class TestHuggingFaceSpaceAPI(unittest.TestCase):
|
|
def test_english_to_spanish(self):
|
|
interface_info = gr.external.get_spaces_interface("abidlabs/english_to_spanish", api_key=None, alias=None)
|
|
self.assertIsInstance(interface_info["inputs"][0], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"][0], gr.outputs.Textbox)
|
|
|
|
class TestLoadInterface(unittest.TestCase):
|
|
def test_english_to_spanish(self):
|
|
interface_info = gr.external.load_interface("spaces/abidlabs/english_to_spanish")
|
|
self.assertIsInstance(interface_info["inputs"][0], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"][0], gr.outputs.Textbox)
|
|
|
|
def test_distilbert_classification(self):
|
|
interface_info = gr.external.load_interface("distilbert-base-uncased-finetuned-sst-2-english", src="huggingface", alias="sentiment_classifier")
|
|
self.assertEqual(interface_info["fn"].__name__, "sentiment_classifier")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
def test_models_src(self):
|
|
interface_info = gr.external.load_interface("models/distilbert-base-uncased-finetuned-sst-2-english", alias="sentiment_classifier")
|
|
self.assertEqual(interface_info["fn"].__name__, "sentiment_classifier")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
class TestCallingLoadInterface(unittest.TestCase):
|
|
def test_sentiment_model(self):
|
|
interface_info = gr.external.load_interface("models/distilbert-base-uncased-finetuned-sst-2-english", alias="sentiment_classifier")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("I am happy, I love you.")
|
|
self.assertGreater(output['Positive'], 0.5)
|
|
|
|
def test_image_classification_model(self):
|
|
interface_info = gr.external.load_interface("models/google/vit-base-patch16-224")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("images/lion.jpg")
|
|
self.assertGreater(output['lion'], 0.5)
|
|
|
|
def test_translation_model(self):
|
|
interface_info = gr.external.load_interface("models/t5-base")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("My name is Sarah and I live in London")
|
|
self.assertEquals(output, 'Mein Name ist Sarah und ich lebe in London')
|
|
|
|
def test_image_to_image_space(self):
|
|
def assertIsFile(path):
|
|
if not pathlib.Path(path).resolve().is_file():
|
|
raise AssertionError("File does not exist: %s" % str(path))
|
|
|
|
interface_info = gr.external.load_interface("spaces/akhaliq/Car_Keypoints")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("images/lion.jpg")
|
|
assertIsFile(output)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() |