mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-21 02:19:59 +08:00
ed2781d8d7
* Pass samples_per_page to examples * Add to changelog Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
296 lines
9.5 KiB
Python
296 lines
9.5 KiB
Python
import os
|
|
import tempfile
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
import gradio as gr
|
|
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
|
|
@patch("gradio.examples.CACHED_FOLDER", tempfile.mkdtemp())
|
|
class TestExamples:
|
|
def test_handle_single_input(self):
|
|
examples = gr.Examples(["hello", "hi"], gr.Textbox())
|
|
assert examples.processed_examples == [["hello"], ["hi"]]
|
|
|
|
examples = gr.Examples([["hello"]], gr.Textbox())
|
|
assert examples.processed_examples == [["hello"]]
|
|
|
|
examples = gr.Examples(["test/test_files/bus.png"], gr.Image())
|
|
assert examples.processed_examples == [[gr.media_data.BASE64_IMAGE]]
|
|
|
|
def test_handle_multiple_inputs(self):
|
|
examples = gr.Examples(
|
|
[["hello", "test/test_files/bus.png"]], [gr.Textbox(), gr.Image()]
|
|
)
|
|
assert examples.processed_examples == [["hello", gr.media_data.BASE64_IMAGE]]
|
|
|
|
def test_handle_directory(self):
|
|
examples = gr.Examples("test/test_files/images", gr.Image())
|
|
assert examples.processed_examples == [
|
|
[gr.media_data.BASE64_IMAGE],
|
|
[gr.media_data.BASE64_IMAGE],
|
|
]
|
|
|
|
def test_handle_directory_with_log_file(self):
|
|
examples = gr.Examples(
|
|
"test/test_files/images_log", [gr.Image(label="im"), gr.Text()]
|
|
)
|
|
assert examples.processed_examples == [
|
|
[gr.media_data.BASE64_IMAGE, "hello"],
|
|
[gr.media_data.BASE64_IMAGE, "hi"],
|
|
]
|
|
for sample in examples.dataset.samples:
|
|
assert os.path.isabs(sample[0])
|
|
|
|
def test_examples_per_page(self):
|
|
examples = gr.Examples(["hello", "hi"], gr.Textbox(), examples_per_page=2)
|
|
assert examples.dataset.get_config()["samples_per_page"] == 2
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_no_preprocessing(self):
|
|
with gr.Blocks():
|
|
image = gr.Image()
|
|
textbox = gr.Textbox()
|
|
|
|
examples = gr.Examples(
|
|
examples=["test/test_files/bus.png"],
|
|
inputs=image,
|
|
outputs=textbox,
|
|
fn=lambda x: x,
|
|
cache_examples=True,
|
|
preprocess=False,
|
|
)
|
|
|
|
prediction = await examples.load_from_cache(0)
|
|
assert prediction == [gr.media_data.BASE64_IMAGE]
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_no_postprocessing(self):
|
|
def im(x):
|
|
return [gr.media_data.BASE64_IMAGE]
|
|
|
|
with gr.Blocks():
|
|
text = gr.Textbox()
|
|
gall = gr.Gallery()
|
|
|
|
examples = gr.Examples(
|
|
examples=["hi"],
|
|
inputs=text,
|
|
outputs=gall,
|
|
fn=im,
|
|
cache_examples=True,
|
|
postprocess=False,
|
|
)
|
|
|
|
prediction = await examples.load_from_cache(0)
|
|
assert prediction[0][0][0]["data"] == gr.media_data.BASE64_IMAGE
|
|
|
|
|
|
@patch("gradio.examples.CACHED_FOLDER", tempfile.mkdtemp())
|
|
class TestExamplesDataset:
|
|
def test_no_headers(self):
|
|
examples = gr.Examples("test/test_files/images_log", [gr.Image(), gr.Text()])
|
|
assert examples.dataset.headers == []
|
|
|
|
def test_all_headers(self):
|
|
examples = gr.Examples(
|
|
"test/test_files/images_log",
|
|
[gr.Image(label="im"), gr.Text(label="your text")],
|
|
)
|
|
assert examples.dataset.headers == ["im", "your text"]
|
|
|
|
def test_some_headers(self):
|
|
examples = gr.Examples(
|
|
"test/test_files/images_log", [gr.Image(label="im"), gr.Text()]
|
|
)
|
|
assert examples.dataset.headers == ["im", ""]
|
|
|
|
|
|
@patch("gradio.examples.CACHED_FOLDER", tempfile.mkdtemp())
|
|
class TestProcessExamples:
|
|
@pytest.mark.asyncio
|
|
async def test_caching(self):
|
|
io = gr.Interface(
|
|
lambda x: "Hello " + x,
|
|
"text",
|
|
"text",
|
|
examples=[["World"], ["Dunya"], ["Monde"]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(1)
|
|
assert prediction[0] == "Hello Dunya"
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_image(self):
|
|
io = gr.Interface(
|
|
lambda x: x,
|
|
"image",
|
|
"image",
|
|
examples=[["test/test_files/bus.png"]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(0)
|
|
assert prediction[0].startswith("")
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_audio(self):
|
|
io = gr.Interface(
|
|
lambda x: x,
|
|
"audio",
|
|
"audio",
|
|
examples=[["test/test_files/audio_sample.wav"]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(0)
|
|
assert prediction[0]["data"].startswith("data:audio/wav;base64,UklGRgA/")
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_update(self):
|
|
io = gr.Interface(
|
|
lambda x: gr.update(visible=False),
|
|
"text",
|
|
"image",
|
|
examples=[["World"], ["Dunya"], ["Monde"]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(1)
|
|
assert prediction[0] == {
|
|
"visible": False,
|
|
"__type__": "update",
|
|
}
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_mix_update(self):
|
|
io = gr.Interface(
|
|
lambda x: [gr.update(lines=4, value="hello"), "test/test_files/bus.png"],
|
|
"text",
|
|
["text", "image"],
|
|
examples=[["World"], ["Dunya"], ["Monde"]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(1)
|
|
assert prediction[0] == {
|
|
"lines": 4,
|
|
"value": "hello",
|
|
"__type__": "update",
|
|
}
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_dict(self):
|
|
text = gr.Textbox()
|
|
out = gr.Label()
|
|
|
|
io = gr.Interface(
|
|
lambda _: {text: gr.update(lines=4, interactive=False), out: "lion"},
|
|
"textbox",
|
|
[text, out],
|
|
examples=["abc"],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(0)
|
|
assert not any(d["trigger"] == "fake_event" for d in io.config["dependencies"])
|
|
assert prediction == [
|
|
{"lines": 4, "__type__": "update", "mode": "static"},
|
|
{"label": "lion"},
|
|
]
|
|
|
|
def test_raise_helpful_error_message_if_providing_partial_examples(self, tmp_path):
|
|
def foo(a, b):
|
|
return a + b
|
|
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="^Examples are being cached but not all input components have",
|
|
):
|
|
with pytest.raises(Exception):
|
|
gr.Interface(
|
|
foo,
|
|
inputs=["text", "text"],
|
|
outputs=["text"],
|
|
examples=[["foo"], ["bar"]],
|
|
cache_examples=True,
|
|
)
|
|
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="^Examples are being cached but not all input components have",
|
|
):
|
|
with pytest.raises(Exception):
|
|
gr.Interface(
|
|
foo,
|
|
inputs=["text", "text"],
|
|
outputs=["text"],
|
|
examples=[["foo", "bar"], ["bar", None]],
|
|
cache_examples=True,
|
|
)
|
|
|
|
def foo_no_exception(a, b=2):
|
|
return a * b
|
|
|
|
gr.Interface(
|
|
foo_no_exception,
|
|
inputs=["text", "number"],
|
|
outputs=["text"],
|
|
examples=[["foo"], ["bar"]],
|
|
cache_examples=True,
|
|
)
|
|
|
|
def many_missing(a, b, c):
|
|
return a * b
|
|
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match="^Examples are being cached but not all input components have",
|
|
):
|
|
with pytest.raises(Exception):
|
|
gr.Interface(
|
|
many_missing,
|
|
inputs=["text", "number", "number"],
|
|
outputs=["text"],
|
|
examples=[["foo", None, None], ["bar", 2, 3]],
|
|
cache_examples=True,
|
|
)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_batch(self):
|
|
def trim_words(words, lens):
|
|
trimmed_words = []
|
|
for w, l in zip(words, lens):
|
|
trimmed_words.append(w[:l])
|
|
return [trimmed_words]
|
|
|
|
io = gr.Interface(
|
|
trim_words,
|
|
["textbox", gr.Number(precision=0)],
|
|
["textbox"],
|
|
batch=True,
|
|
max_batch_size=16,
|
|
examples=[["hello", 3], ["hi", 4]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(0)
|
|
assert prediction == ["hel"]
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_caching_with_batch_multiple_outputs(self):
|
|
def trim_words(words, lens):
|
|
trimmed_words = []
|
|
for w, l in zip(words, lens):
|
|
trimmed_words.append(w[:l])
|
|
return trimmed_words, lens
|
|
|
|
io = gr.Interface(
|
|
trim_words,
|
|
["textbox", gr.Number(precision=0)],
|
|
["textbox", gr.Number(precision=0)],
|
|
batch=True,
|
|
max_batch_size=16,
|
|
examples=[["hello", 3], ["hi", 4]],
|
|
cache_examples=True,
|
|
)
|
|
prediction = await io.examples_handler.load_from_cache(0)
|
|
assert prediction == ["hel", "3"]
|