gradio/gradio/processing_utils.py
Ömer Faruk Özdemir 4c5e116709 Format-The-Codebase
- add a format script
- solve a conflict between flake8 and black
2022-02-10 11:12:26 +03:00

503 lines
17 KiB
Python

import base64
import mimetypes
import os
import shutil
import tempfile
import warnings
from io import BytesIO
import numpy as np
import requests
from PIL import Image, ImageOps
from gradio import encryptor
with warnings.catch_warnings():
warnings.simplefilter("ignore") # Ignore pydub warning if ffmpeg is not installed
from pydub import AudioSegment
#########################
# IMAGE PRE-PROCESSING
#########################
def decode_base64_to_image(encoding):
content = encoding.split(";")[1]
image_encoded = content.split(",")[1]
return Image.open(BytesIO(base64.b64decode(image_encoded)))
def encode_url_or_file_to_base64(path):
try:
requests.get(path)
return encode_url_to_base64(path)
except (requests.exceptions.MissingSchema, requests.exceptions.InvalidSchema):
return encode_file_to_base64(path)
def get_mimetype(filename):
mimetype = mimetypes.guess_type(filename)[0]
if mimetype is not None:
mimetype = mimetype.replace("x-wav", "wav").replace("x-flac", "flac")
return mimetype
def get_extension(encoding):
encoding = encoding.replace("audio/wav", "audio/x-wav")
type = mimetypes.guess_type(encoding)[0]
if type == "audio/flac": # flac is not supported by mimetypes
return "flac"
extension = mimetypes.guess_extension(type)
if extension is not None and extension.startswith("."):
extension = extension[1:]
return extension
def encode_file_to_base64(f, encryption_key=None):
with open(f, "rb") as file:
encoded_string = base64.b64encode(file.read())
if encryption_key:
encoded_string = encryptor.decrypt(encryption_key, encoded_string)
base64_str = str(encoded_string, "utf-8")
mimetype = get_mimetype(f)
return (
"data:"
+ (mimetype if mimetype is not None else "")
+ ";base64,"
+ base64_str
)
def encode_url_to_base64(url):
encoded_string = base64.b64encode(requests.get(url).content)
base64_str = str(encoded_string, "utf-8")
mimetype = get_mimetype(url)
return (
"data:" + (mimetype if mimetype is not None else "") + ";base64," + base64_str
)
def encode_plot_to_base64(plt):
with BytesIO() as output_bytes:
plt.savefig(output_bytes, format="png")
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return "data:image/png;base64," + base64_str
def encode_array_to_base64(image_array):
with BytesIO() as output_bytes:
PIL_image = Image.fromarray(_convert(image_array, np.uint8, force_copy=False))
PIL_image.save(output_bytes, "PNG")
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return "data:image/png;base64," + base64_str
def resize_and_crop(img, size, crop_type="center"):
"""
Resize and crop an image to fit the specified size.
args:
size: `(width, height)` tuple.
crop_type: can be 'top', 'middle' or 'bottom', depending on this
value, the image will cropped getting the 'top/left', 'middle' or
'bottom/right' of the image to fit the size.
raises:
ValueError: if an invalid `crop_type` is provided.
"""
if crop_type == "top":
center = (0, 0)
elif crop_type == "center":
center = (0.5, 0.5)
else:
raise ValueError
return ImageOps.fit(img, size, centering=center)
##################
# Audio
##################
def audio_from_file(filename, crop_min=0, crop_max=100):
audio = AudioSegment.from_file(filename)
if crop_min != 0 or crop_max != 100:
audio_start = len(audio) * crop_min / 100
audio_end = len(audio) * crop_max / 100
audio = audio[audio_start:audio_end]
data = np.array(audio.get_array_of_samples())
if audio.channels > 1:
data = data.reshape(-1, audio.channels)
return audio.frame_rate, data
def audio_to_file(sample_rate, data, filename):
data = convert_to_16_bit_wav(data)
audio = AudioSegment(
data.tobytes(),
frame_rate=sample_rate,
sample_width=data.dtype.itemsize,
channels=(1 if len(data.shape) == 1 else data.shape[1]),
)
audio.export(filename, format="wav").close()
def convert_to_16_bit_wav(data):
# Based on: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
if data.dtype == np.float32:
warnings.warn(
"Audio data is not in 16-bit integer format."
"Trying to convert to 16-bit int format."
)
data = data / np.abs(data).max()
data = data * 32767
data = data.astype(np.int16)
elif data.dtype == np.int32:
warnings.warn(
"Audio data is not in 16-bit integer format."
"Trying to convert to 16-bit int format."
)
data = data / 65538
data = data.astype(np.int16)
elif data.dtype == np.int16:
pass
elif data.dtype == np.uint8:
warnings.warn(
"Audio data is not in 16-bit integer format."
"Trying to convert to 16-bit int format."
)
data = data * 257 - 32768
data = data.astype(np.int16)
else:
raise ValueError("Audio data cannot be converted to " "16-bit int format.")
return data
##################
# OUTPUT
##################
def decode_base64_to_binary(encoding):
extension = get_extension(encoding)
data = encoding.split(",")[1]
return base64.b64decode(data), extension
def decode_base64_to_file(encoding, encryption_key=None, file_path=None):
data, extension = decode_base64_to_binary(encoding)
prefix = None
if file_path is not None:
filename = os.path.basename(file_path)
prefix = filename
if "." in filename:
prefix = filename[0 : filename.index(".")]
extension = filename[filename.index(".") + 1 :]
if extension is None:
file_obj = tempfile.NamedTemporaryFile(delete=False, prefix=prefix)
else:
file_obj = tempfile.NamedTemporaryFile(
delete=False, prefix=prefix, suffix="." + extension
)
if encryption_key is not None:
data = encryptor.encrypt(encryption_key, data)
file_obj.write(data)
file_obj.flush()
return file_obj
def create_tmp_copy_of_file(file_path):
file_name = os.path.basename(file_path)
prefix, extension = file_name, None
if "." in file_name:
prefix = file_name[0 : file_name.index(".")]
extension = file_name[file_name.index(".") + 1 :]
if extension is None:
file_obj = tempfile.NamedTemporaryFile(delete=False, prefix=prefix)
else:
file_obj = tempfile.NamedTemporaryFile(
delete=False, prefix=prefix, suffix="." + extension
)
shutil.copy2(file_path, file_obj.name)
return file_obj
def _convert(image, dtype, force_copy=False, uniform=False):
"""
Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531
Convert an image to the requested data-type.
Warnings are issued in case of precision loss, or when negative values
are clipped during conversion to unsigned integer types (sign loss).
Floating point values are expected to be normalized and will be clipped
to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or
signed integers respectively.
Numbers are not shifted to the negative side when converting from
unsigned to signed integer types. Negative values will be clipped when
converting to unsigned integers.
Parameters
----------
image : ndarray
Input image.
dtype : dtype
Target data-type.
force_copy : bool, optional
Force a copy of the data, irrespective of its current dtype.
uniform : bool, optional
Uniformly quantize the floating point range to the integer range.
By default (uniform=False) floating point values are scaled and
rounded to the nearest integers, which minimizes back and forth
conversion errors.
.. versionchanged :: 0.15
``_convert`` no longer warns about possible precision or sign
information loss. See discussions on these warnings at:
https://github.com/scikit-image/scikit-image/issues/2602
https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228
https://github.com/scikit-image/scikit-image/pull/3575
References
----------
.. [1] DirectX data conversion rules.
https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx
.. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25",
pp 7-8. Khronos Group, 2010.
.. [3] Proper treatment of pixels as integers. A.W. Paeth.
In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990.
.. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels",
pp 47-57. Morgan Kaufmann, 1998.
"""
dtype_range = {
bool: (False, True),
np.bool_: (False, True),
np.bool8: (False, True),
float: (-1, 1),
np.float_: (-1, 1),
np.float16: (-1, 1),
np.float32: (-1, 1),
np.float64: (-1, 1),
}
def _dtype_itemsize(itemsize, *dtypes):
"""Return first of `dtypes` with itemsize greater than `itemsize`
Parameters
----------
itemsize: int
The data type object element size.
Other Parameters
----------------
*dtypes:
Any Object accepted by `np.dtype` to be converted to a data
type object
Returns
-------
dtype: data type object
First of `dtypes` with itemsize greater than `itemsize`.
"""
return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize)
def _dtype_bits(kind, bits, itemsize=1):
"""Return dtype of `kind` that can store a `bits` wide unsigned int
Parameters:
kind: str
Data type kind.
bits: int
Desired number of bits.
itemsize: int
The data type object element size.
Returns
-------
dtype: data type object
Data type of `kind` that can store a `bits` wide unsigned int
"""
s = next(
i
for i in (itemsize,) + (2, 4, 8)
if bits < (i * 8) or (bits == (i * 8) and kind == "u")
)
return np.dtype(kind + str(s))
def _scale(a, n, m, copy=True):
"""Scale an array of unsigned/positive integers from `n` to `m` bits.
Numbers can be represented exactly only if `m` is a multiple of `n`.
Parameters
----------
a : ndarray
Input image array.
n : int
Number of bits currently used to encode the values in `a`.
m : int
Desired number of bits to encode the values in `out`.
copy : bool, optional
If True, allocates and returns new array. Otherwise, modifies
`a` in place.
Returns
-------
out : array
Output image array. Has the same kind as `a`.
"""
kind = a.dtype.kind
if n > m and a.max() < 2**m:
return a.astype(_dtype_bits(kind, m))
elif n == m:
return a.copy() if copy else a
elif n > m:
# downscale with precision loss
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.floor_divide(a, 2 ** (n - m), out=b, dtype=a.dtype, casting="unsafe")
return b
else:
a //= 2 ** (n - m)
return a
elif m % n == 0:
# exact upscale to a multiple of `n` bits
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype)
return b
else:
a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False)
a *= (2**m - 1) // (2**n - 1)
return a
else:
# upscale to a multiple of `n` bits,
# then downscale with precision loss
o = (m // n + 1) * n
if copy:
b = np.empty(a.shape, _dtype_bits(kind, o))
np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype)
b //= 2 ** (o - m)
return b
else:
a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False)
a *= (2**o - 1) // (2**n - 1)
a //= 2 ** (o - m)
return a
image = np.asarray(image)
dtypeobj_in = image.dtype
if dtype is np.floating:
dtypeobj_out = np.dtype("float64")
else:
dtypeobj_out = np.dtype(dtype)
dtype_in = dtypeobj_in.type
dtype_out = dtypeobj_out.type
kind_in = dtypeobj_in.kind
kind_out = dtypeobj_out.kind
itemsize_in = dtypeobj_in.itemsize
itemsize_out = dtypeobj_out.itemsize
# Below, we do an `issubdtype` check. Its purpose is to find out
# whether we can get away without doing any image conversion. This happens
# when:
#
# - the output and input dtypes are the same or
# - when the output is specified as a type, and the input dtype
# is a subclass of that type (e.g. `np.floating` will allow
# `float32` and `float64` arrays through)
if np.issubdtype(dtype_in, np.obj2sctype(dtype)):
if force_copy:
image = image.copy()
return image
if kind_in in "ui":
imin_in = np.iinfo(dtype_in).min
imax_in = np.iinfo(dtype_in).max
if kind_out in "ui":
imin_out = np.iinfo(dtype_out).min
imax_out = np.iinfo(dtype_out).max
# any -> binary
if kind_out == "b":
return image > dtype_in(dtype_range[dtype_in][1] / 2)
# binary -> any
if kind_in == "b":
result = image.astype(dtype_out)
if kind_out != "f":
result *= dtype_out(dtype_range[dtype_out][1])
return result
# float -> any
if kind_in == "f":
if kind_out == "f":
# float -> float
return image.astype(dtype_out)
if np.min(image) < -1.0 or np.max(image) > 1.0:
raise ValueError("Images of type float must be between -1 and 1.")
# floating point -> integer
# use float type that can represent output integer type
computation_type = _dtype_itemsize(
itemsize_out, dtype_in, np.float32, np.float64
)
if not uniform:
if kind_out == "u":
image_out = np.multiply(image, imax_out, dtype=computation_type)
else:
image_out = np.multiply(
image, (imax_out - imin_out) / 2, dtype=computation_type
)
image_out -= 1.0 / 2.0
np.rint(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out)
elif kind_out == "u":
image_out = np.multiply(image, imax_out + 1, dtype=computation_type)
np.clip(image_out, 0, imax_out, out=image_out)
else:
image_out = np.multiply(
image, (imax_out - imin_out + 1.0) / 2.0, dtype=computation_type
)
np.floor(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out)
return image_out.astype(dtype_out)
# signed/unsigned int -> float
if kind_out == "f":
# use float type that can exactly represent input integers
computation_type = _dtype_itemsize(
itemsize_in, dtype_out, np.float32, np.float64
)
if kind_in == "u":
# using np.divide or np.multiply doesn't copy the data
# until the computation time
image = np.multiply(image, 1.0 / imax_in, dtype=computation_type)
# DirectX uses this conversion also for signed ints
# if imin_in:
# np.maximum(image, -1.0, out=image)
else:
image = np.add(image, 0.5, dtype=computation_type)
image *= 2 / (imax_in - imin_in)
return np.asarray(image, dtype_out)
# unsigned int -> signed/unsigned int
if kind_in == "u":
if kind_out == "i":
# unsigned int -> signed int
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1)
return image.view(dtype_out)
else:
# unsigned int -> unsigned int
return _scale(image, 8 * itemsize_in, 8 * itemsize_out)
# signed int -> unsigned int
if kind_out == "u":
image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out)
result = np.empty(image.shape, dtype_out)
np.maximum(image, 0, out=result, dtype=image.dtype, casting="unsafe")
return result
# signed int -> signed int
if itemsize_in > itemsize_out:
return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1)
image = image.astype(_dtype_bits("i", itemsize_out * 8))
image -= imin_in
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False)
image += imin_out
return image.astype(dtype_out)