gradio/test/test_interpretation.py
Ömer Faruk Özdemir 82cb2de626 Accelerate Tests
- add coverage to the circleci
- combine the divided tests into single folder
- update requirements
2022-02-09 08:50:00 +03:00

139 lines
5.2 KiB
Python

import os
import unittest
import numpy as np
import gradio.interpretation
import gradio.test_data
from gradio import Interface
from gradio.processing_utils import (decode_base64_to_image,
encode_array_to_base64)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
class TestDefault(unittest.TestCase):
def test_default_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
text_interface = Interface(
max_word_len, "textbox", "label", interpretation="default"
)
interpretation = text_interface.interpret(["quickest brown fox"])[0][0]
self.assertGreater(
interpretation[0][1], 0
) # Checks to see if the first word has >0 score.
self.assertEqual(
interpretation[-1][1], 0
) # Checks to see if the last word has 0 score.
class TestShapley(unittest.TestCase):
def test_shapley_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
text_interface = Interface(
max_word_len, "textbox", "label", interpretation="shapley"
)
interpretation = text_interface.interpret(["quickest brown fox"])[0][0]
self.assertGreater(
interpretation[0][1], 0
) # Checks to see if the first word has >0 score.
self.assertEqual(
interpretation[-1][1], 0
) # Checks to see if the last word has 0 score.
class TestCustom(unittest.TestCase):
def test_custom_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
custom = lambda text: [(char, 1) for char in text]
text_interface = Interface(
max_word_len, "textbox", "label", interpretation=custom
)
result = text_interface.interpret(["quickest brown fox"])[0][0]
self.assertEqual(
result[0][1], 1
) # Checks to see if the first letter has score of 1.
def test_custom_img(self):
max_pixel_value = lambda img: img.max()
custom = lambda img: img.tolist()
img_interface = Interface(
max_pixel_value, "image", "label", interpretation=custom
)
result = img_interface.interpret([gradio.test_data.BASE64_IMAGE])[0][0]
expected_result = np.asarray(
decode_base64_to_image(gradio.test_data.BASE64_IMAGE).convert("RGB")
).tolist()
self.assertEqual(result, expected_result)
class TestHelperMethods(unittest.TestCase):
def test_diff(self):
diff = gradio.interpretation.diff(13, "2")
self.assertEquals(diff, 11)
diff = gradio.interpretation.diff("cat", "dog")
self.assertEquals(diff, 1)
diff = gradio.interpretation.diff("cat", "cat")
self.assertEquals(diff, 0)
def test_quantify_difference_with_textbox(self):
iface = Interface(lambda text: text, ["textbox"], ["textbox"])
diff = gradio.interpretation.quantify_difference_in_label(
iface, ["test"], ["test"]
)
self.assertEquals(diff, 0)
diff = gradio.interpretation.quantify_difference_in_label(
iface, ["test"], ["test_diff"]
)
self.assertEquals(diff, 1)
def test_quantify_difference_with_label(self):
iface = Interface(lambda text: len(text), ["textbox"], ["label"])
diff = gradio.interpretation.quantify_difference_in_label(iface, ["3"], ["10"])
self.assertEquals(diff, -7)
diff = gradio.interpretation.quantify_difference_in_label(iface, ["0"], ["100"])
self.assertEquals(diff, -100)
def test_quantify_difference_with_confidences(self):
iface = Interface(lambda text: len(text), ["textbox"], ["label"])
output_1 = {"cat": 0.9, "dog": 0.1}
output_2 = {"cat": 0.6, "dog": 0.4}
output_3 = {"cat": 0.1, "dog": 0.6}
diff = gradio.interpretation.quantify_difference_in_label(
iface, [output_1], [output_2]
)
self.assertAlmostEquals(diff, 0.3)
diff = gradio.interpretation.quantify_difference_in_label(
iface, [output_1], [output_3]
)
self.assertAlmostEquals(diff, 0.8)
def test_get_regression_value(self):
iface = Interface(lambda text: text, ["textbox"], ["label"])
output_1 = {"cat": 0.9, "dog": 0.1}
output_2 = {"cat": float("nan"), "dog": 0.4}
output_3 = {"cat": 0.1, "dog": 0.6}
diff = gradio.interpretation.get_regression_or_classification_value(
iface, [output_1], [output_2]
)
self.assertEquals(diff, 0)
diff = gradio.interpretation.get_regression_or_classification_value(
iface, [output_1], [output_3]
)
self.assertAlmostEquals(diff, 0.1)
def test_get_classification_value(self):
iface = Interface(lambda text: text, ["textbox"], ["label"])
diff = gradio.interpretation.get_regression_or_classification_value(
iface, ["cat"], ["test"]
)
self.assertEquals(diff, 1)
diff = gradio.interpretation.get_regression_or_classification_value(
iface, ["test"], ["test"]
)
self.assertEquals(diff, 0)
if __name__ == "__main__":
unittest.main()