mirror of
https://github.com/gradio-app/gradio.git
synced 2025-02-17 11:29:58 +08:00
* fix(pkg_resources): use `importlib` in favor of `pkg_resources` * lint * import * removed unnecessary version check * fixes * pass lint and format * fix * requirements * fix all typing issues * fix routes * fix * Delete forty-rooms-arrive.md * add changeset --------- Co-authored-by: Abubakar Abid <abubakar@huggingface.co> Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com>
547 lines
19 KiB
Python
547 lines
19 KiB
Python
from __future__ import annotations
|
|
|
|
import base64
|
|
import json
|
|
import logging
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
import tempfile
|
|
import warnings
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
from gradio_client import utils as client_utils
|
|
from PIL import Image, ImageOps, PngImagePlugin
|
|
|
|
from gradio import wasm_utils
|
|
|
|
if not wasm_utils.IS_WASM:
|
|
# TODO: Support ffmpeg on Wasm
|
|
from ffmpy import FFmpeg, FFprobe, FFRuntimeError
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore") # Ignore pydub warning if ffmpeg is not installed
|
|
from pydub import AudioSegment
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
#########################
|
|
# GENERAL
|
|
#########################
|
|
|
|
|
|
def to_binary(x: str | dict) -> bytes:
|
|
"""Converts a base64 string or dictionary to a binary string that can be sent in a POST."""
|
|
if isinstance(x, dict):
|
|
if x.get("data"):
|
|
base64str = x["data"]
|
|
else:
|
|
base64str = client_utils.encode_url_or_file_to_base64(x["name"])
|
|
else:
|
|
base64str = x
|
|
return base64.b64decode(extract_base64_data(base64str))
|
|
|
|
|
|
def extract_base64_data(x: str) -> str:
|
|
"""Just extracts the base64 data from a general base64 string."""
|
|
return x.rsplit(",", 1)[-1]
|
|
|
|
|
|
#########################
|
|
# IMAGE PRE-PROCESSING
|
|
#########################
|
|
|
|
|
|
def decode_base64_to_image(encoding: str) -> Image.Image:
|
|
image_encoded = extract_base64_data(encoding)
|
|
img = Image.open(BytesIO(base64.b64decode(image_encoded)))
|
|
try:
|
|
if hasattr(ImageOps, "exif_transpose"):
|
|
img = ImageOps.exif_transpose(img)
|
|
except Exception:
|
|
log.warning(
|
|
"Failed to transpose image %s based on EXIF data.",
|
|
img,
|
|
exc_info=True,
|
|
)
|
|
return img
|
|
|
|
|
|
def encode_plot_to_base64(plt):
|
|
with BytesIO() as output_bytes:
|
|
plt.savefig(output_bytes, format="png")
|
|
bytes_data = output_bytes.getvalue()
|
|
base64_str = str(base64.b64encode(bytes_data), "utf-8")
|
|
return "data:image/png;base64," + base64_str
|
|
|
|
|
|
def get_pil_metadata(pil_image):
|
|
# Copy any text-only metadata
|
|
metadata = PngImagePlugin.PngInfo()
|
|
for key, value in pil_image.info.items():
|
|
if isinstance(key, str) and isinstance(value, str):
|
|
metadata.add_text(key, value)
|
|
|
|
return metadata
|
|
|
|
|
|
def encode_pil_to_bytes(pil_image, format="png"):
|
|
with BytesIO() as output_bytes:
|
|
pil_image.save(output_bytes, format, pnginfo=get_pil_metadata(pil_image))
|
|
return output_bytes.getvalue()
|
|
|
|
|
|
def encode_pil_to_base64(pil_image):
|
|
bytes_data = encode_pil_to_bytes(pil_image)
|
|
base64_str = str(base64.b64encode(bytes_data), "utf-8")
|
|
return "data:image/png;base64," + base64_str
|
|
|
|
|
|
def encode_array_to_base64(image_array):
|
|
with BytesIO() as output_bytes:
|
|
pil_image = Image.fromarray(_convert(image_array, np.uint8, force_copy=False))
|
|
pil_image.save(output_bytes, "PNG")
|
|
bytes_data = output_bytes.getvalue()
|
|
base64_str = str(base64.b64encode(bytes_data), "utf-8")
|
|
return "data:image/png;base64," + base64_str
|
|
|
|
|
|
def resize_and_crop(img, size, crop_type="center"):
|
|
"""
|
|
Resize and crop an image to fit the specified size.
|
|
args:
|
|
size: `(width, height)` tuple. Pass `None` for either width or height
|
|
to only crop and resize the other.
|
|
crop_type: can be 'top', 'middle' or 'bottom', depending on this
|
|
value, the image will cropped getting the 'top/left', 'middle' or
|
|
'bottom/right' of the image to fit the size.
|
|
raises:
|
|
ValueError: if an invalid `crop_type` is provided.
|
|
"""
|
|
if crop_type == "top":
|
|
center = (0, 0)
|
|
elif crop_type == "center":
|
|
center = (0.5, 0.5)
|
|
else:
|
|
raise ValueError
|
|
|
|
resize = list(size)
|
|
if size[0] is None:
|
|
resize[0] = img.size[0]
|
|
if size[1] is None:
|
|
resize[1] = img.size[1]
|
|
return ImageOps.fit(img, resize, centering=center) # type: ignore
|
|
|
|
|
|
##################
|
|
# Audio
|
|
##################
|
|
|
|
|
|
def audio_from_file(filename, crop_min=0, crop_max=100):
|
|
try:
|
|
audio = AudioSegment.from_file(filename)
|
|
except FileNotFoundError as e:
|
|
isfile = Path(filename).is_file()
|
|
msg = (
|
|
f"Cannot load audio from file: `{'ffprobe' if isfile else filename}` not found."
|
|
+ " Please install `ffmpeg` in your system to use non-WAV audio file formats"
|
|
" and make sure `ffprobe` is in your PATH."
|
|
if isfile
|
|
else ""
|
|
)
|
|
raise RuntimeError(msg) from e
|
|
if crop_min != 0 or crop_max != 100:
|
|
audio_start = len(audio) * crop_min / 100
|
|
audio_end = len(audio) * crop_max / 100
|
|
audio = audio[audio_start:audio_end]
|
|
data = np.array(audio.get_array_of_samples())
|
|
if audio.channels > 1:
|
|
data = data.reshape(-1, audio.channels)
|
|
return audio.frame_rate, data
|
|
|
|
|
|
def audio_to_file(sample_rate, data, filename, format="wav"):
|
|
if format == "wav":
|
|
data = convert_to_16_bit_wav(data)
|
|
audio = AudioSegment(
|
|
data.tobytes(),
|
|
frame_rate=sample_rate,
|
|
sample_width=data.dtype.itemsize,
|
|
channels=(1 if len(data.shape) == 1 else data.shape[1]),
|
|
)
|
|
file = audio.export(filename, format=format)
|
|
file.close() # type: ignore
|
|
|
|
|
|
def convert_to_16_bit_wav(data):
|
|
# Based on: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
|
|
warning = "Trying to convert audio automatically from {} to 16-bit int format."
|
|
if data.dtype in [np.float64, np.float32, np.float16]:
|
|
warnings.warn(warning.format(data.dtype))
|
|
data = data / np.abs(data).max()
|
|
data = data * 32767
|
|
data = data.astype(np.int16)
|
|
elif data.dtype == np.int32:
|
|
warnings.warn(warning.format(data.dtype))
|
|
data = data / 65538
|
|
data = data.astype(np.int16)
|
|
elif data.dtype == np.int16:
|
|
pass
|
|
elif data.dtype == np.uint16:
|
|
warnings.warn(warning.format(data.dtype))
|
|
data = data - 32768
|
|
data = data.astype(np.int16)
|
|
elif data.dtype == np.uint8:
|
|
warnings.warn(warning.format(data.dtype))
|
|
data = data * 257 - 32768
|
|
data = data.astype(np.int16)
|
|
else:
|
|
raise ValueError(
|
|
"Audio data cannot be converted automatically from "
|
|
f"{data.dtype} to 16-bit int format."
|
|
)
|
|
return data
|
|
|
|
|
|
##################
|
|
# OUTPUT
|
|
##################
|
|
|
|
|
|
def _convert(image, dtype, force_copy=False, uniform=False):
|
|
"""
|
|
Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531
|
|
|
|
Convert an image to the requested data-type.
|
|
Warnings are issued in case of precision loss, or when negative values
|
|
are clipped during conversion to unsigned integer types (sign loss).
|
|
Floating point values are expected to be normalized and will be clipped
|
|
to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or
|
|
signed integers respectively.
|
|
Numbers are not shifted to the negative side when converting from
|
|
unsigned to signed integer types. Negative values will be clipped when
|
|
converting to unsigned integers.
|
|
Parameters
|
|
----------
|
|
image : ndarray
|
|
Input image.
|
|
dtype : dtype
|
|
Target data-type.
|
|
force_copy : bool, optional
|
|
Force a copy of the data, irrespective of its current dtype.
|
|
uniform : bool, optional
|
|
Uniformly quantize the floating point range to the integer range.
|
|
By default (uniform=False) floating point values are scaled and
|
|
rounded to the nearest integers, which minimizes back and forth
|
|
conversion errors.
|
|
.. versionchanged :: 0.15
|
|
``_convert`` no longer warns about possible precision or sign
|
|
information loss. See discussions on these warnings at:
|
|
https://github.com/scikit-image/scikit-image/issues/2602
|
|
https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228
|
|
https://github.com/scikit-image/scikit-image/pull/3575
|
|
References
|
|
----------
|
|
.. [1] DirectX data conversion rules.
|
|
https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx
|
|
.. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25",
|
|
pp 7-8. Khronos Group, 2010.
|
|
.. [3] Proper treatment of pixels as integers. A.W. Paeth.
|
|
In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990.
|
|
.. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels",
|
|
pp 47-57. Morgan Kaufmann, 1998.
|
|
"""
|
|
dtype_range = {
|
|
bool: (False, True),
|
|
np.bool_: (False, True),
|
|
np.bool8: (False, True), # type: ignore
|
|
float: (-1, 1),
|
|
np.float_: (-1, 1),
|
|
np.float16: (-1, 1),
|
|
np.float32: (-1, 1),
|
|
np.float64: (-1, 1),
|
|
}
|
|
|
|
def _dtype_itemsize(itemsize, *dtypes):
|
|
"""Return first of `dtypes` with itemsize greater than `itemsize`
|
|
Parameters
|
|
----------
|
|
itemsize: int
|
|
The data type object element size.
|
|
Other Parameters
|
|
----------------
|
|
*dtypes:
|
|
Any Object accepted by `np.dtype` to be converted to a data
|
|
type object
|
|
Returns
|
|
-------
|
|
dtype: data type object
|
|
First of `dtypes` with itemsize greater than `itemsize`.
|
|
"""
|
|
return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize)
|
|
|
|
def _dtype_bits(kind, bits, itemsize=1):
|
|
"""Return dtype of `kind` that can store a `bits` wide unsigned int
|
|
Parameters:
|
|
kind: str
|
|
Data type kind.
|
|
bits: int
|
|
Desired number of bits.
|
|
itemsize: int
|
|
The data type object element size.
|
|
Returns
|
|
-------
|
|
dtype: data type object
|
|
Data type of `kind` that can store a `bits` wide unsigned int
|
|
"""
|
|
|
|
s = next(
|
|
i
|
|
for i in (itemsize,) + (2, 4, 8)
|
|
if bits < (i * 8) or (bits == (i * 8) and kind == "u")
|
|
)
|
|
|
|
return np.dtype(kind + str(s))
|
|
|
|
def _scale(a, n, m, copy=True):
|
|
"""Scale an array of unsigned/positive integers from `n` to `m` bits.
|
|
Numbers can be represented exactly only if `m` is a multiple of `n`.
|
|
Parameters
|
|
----------
|
|
a : ndarray
|
|
Input image array.
|
|
n : int
|
|
Number of bits currently used to encode the values in `a`.
|
|
m : int
|
|
Desired number of bits to encode the values in `out`.
|
|
copy : bool, optional
|
|
If True, allocates and returns new array. Otherwise, modifies
|
|
`a` in place.
|
|
Returns
|
|
-------
|
|
out : array
|
|
Output image array. Has the same kind as `a`.
|
|
"""
|
|
kind = a.dtype.kind
|
|
if n > m and a.max() < 2**m:
|
|
return a.astype(_dtype_bits(kind, m))
|
|
elif n == m:
|
|
return a.copy() if copy else a
|
|
elif n > m:
|
|
# downscale with precision loss
|
|
if copy:
|
|
b = np.empty(a.shape, _dtype_bits(kind, m))
|
|
np.floor_divide(a, 2 ** (n - m), out=b, dtype=a.dtype, casting="unsafe")
|
|
return b
|
|
else:
|
|
a //= 2 ** (n - m)
|
|
return a
|
|
elif m % n == 0:
|
|
# exact upscale to a multiple of `n` bits
|
|
if copy:
|
|
b = np.empty(a.shape, _dtype_bits(kind, m))
|
|
np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype)
|
|
return b
|
|
else:
|
|
a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False)
|
|
a *= (2**m - 1) // (2**n - 1)
|
|
return a
|
|
else:
|
|
# upscale to a multiple of `n` bits,
|
|
# then downscale with precision loss
|
|
o = (m // n + 1) * n
|
|
if copy:
|
|
b = np.empty(a.shape, _dtype_bits(kind, o))
|
|
np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype)
|
|
b //= 2 ** (o - m)
|
|
return b
|
|
else:
|
|
a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False)
|
|
a *= (2**o - 1) // (2**n - 1)
|
|
a //= 2 ** (o - m)
|
|
return a
|
|
|
|
image = np.asarray(image)
|
|
dtypeobj_in = image.dtype
|
|
dtypeobj_out = np.dtype("float64") if dtype is np.floating else np.dtype(dtype)
|
|
dtype_in = dtypeobj_in.type
|
|
dtype_out = dtypeobj_out.type
|
|
kind_in = dtypeobj_in.kind
|
|
kind_out = dtypeobj_out.kind
|
|
itemsize_in = dtypeobj_in.itemsize
|
|
itemsize_out = dtypeobj_out.itemsize
|
|
|
|
# Below, we do an `issubdtype` check. Its purpose is to find out
|
|
# whether we can get away without doing any image conversion. This happens
|
|
# when:
|
|
#
|
|
# - the output and input dtypes are the same or
|
|
# - when the output is specified as a type, and the input dtype
|
|
# is a subclass of that type (e.g. `np.floating` will allow
|
|
# `float32` and `float64` arrays through)
|
|
|
|
if np.issubdtype(dtype_in, np.obj2sctype(dtype)):
|
|
if force_copy:
|
|
image = image.copy()
|
|
return image
|
|
|
|
if kind_in in "ui":
|
|
imin_in = np.iinfo(dtype_in).min
|
|
imax_in = np.iinfo(dtype_in).max
|
|
if kind_out in "ui":
|
|
imin_out = np.iinfo(dtype_out).min # type: ignore
|
|
imax_out = np.iinfo(dtype_out).max # type: ignore
|
|
|
|
# any -> binary
|
|
if kind_out == "b":
|
|
return image > dtype_in(dtype_range[dtype_in][1] / 2)
|
|
|
|
# binary -> any
|
|
if kind_in == "b":
|
|
result = image.astype(dtype_out)
|
|
if kind_out != "f":
|
|
result *= dtype_out(dtype_range[dtype_out][1])
|
|
return result
|
|
|
|
# float -> any
|
|
if kind_in == "f":
|
|
if kind_out == "f":
|
|
# float -> float
|
|
return image.astype(dtype_out)
|
|
|
|
if np.min(image) < -1.0 or np.max(image) > 1.0:
|
|
raise ValueError("Images of type float must be between -1 and 1.")
|
|
# floating point -> integer
|
|
# use float type that can represent output integer type
|
|
computation_type = _dtype_itemsize(
|
|
itemsize_out, dtype_in, np.float32, np.float64
|
|
)
|
|
|
|
if not uniform:
|
|
if kind_out == "u":
|
|
image_out = np.multiply(image, imax_out, dtype=computation_type) # type: ignore
|
|
else:
|
|
image_out = np.multiply(
|
|
image, (imax_out - imin_out) / 2, dtype=computation_type # type: ignore
|
|
)
|
|
image_out -= 1.0 / 2.0
|
|
np.rint(image_out, out=image_out)
|
|
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
|
|
elif kind_out == "u":
|
|
image_out = np.multiply(image, imax_out + 1, dtype=computation_type) # type: ignore
|
|
np.clip(image_out, 0, imax_out, out=image_out) # type: ignore
|
|
else:
|
|
image_out = np.multiply(
|
|
image, (imax_out - imin_out + 1.0) / 2.0, dtype=computation_type # type: ignore
|
|
)
|
|
np.floor(image_out, out=image_out)
|
|
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
|
|
return image_out.astype(dtype_out)
|
|
|
|
# signed/unsigned int -> float
|
|
if kind_out == "f":
|
|
# use float type that can exactly represent input integers
|
|
computation_type = _dtype_itemsize(
|
|
itemsize_in, dtype_out, np.float32, np.float64
|
|
)
|
|
|
|
if kind_in == "u":
|
|
# using np.divide or np.multiply doesn't copy the data
|
|
# until the computation time
|
|
image = np.multiply(image, 1.0 / imax_in, dtype=computation_type) # type: ignore
|
|
# DirectX uses this conversion also for signed ints
|
|
# if imin_in:
|
|
# np.maximum(image, -1.0, out=image)
|
|
else:
|
|
image = np.add(image, 0.5, dtype=computation_type)
|
|
image *= 2 / (imax_in - imin_in) # type: ignore
|
|
|
|
return np.asarray(image, dtype_out)
|
|
|
|
# unsigned int -> signed/unsigned int
|
|
if kind_in == "u":
|
|
if kind_out == "i":
|
|
# unsigned int -> signed int
|
|
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1)
|
|
return image.view(dtype_out)
|
|
else:
|
|
# unsigned int -> unsigned int
|
|
return _scale(image, 8 * itemsize_in, 8 * itemsize_out)
|
|
|
|
# signed int -> unsigned int
|
|
if kind_out == "u":
|
|
image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out)
|
|
result = np.empty(image.shape, dtype_out)
|
|
np.maximum(image, 0, out=result, dtype=image.dtype, casting="unsafe")
|
|
return result
|
|
|
|
# signed int -> signed int
|
|
if itemsize_in > itemsize_out:
|
|
return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1)
|
|
|
|
image = image.astype(_dtype_bits("i", itemsize_out * 8))
|
|
image -= imin_in # type: ignore
|
|
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False)
|
|
image += imin_out # type: ignore
|
|
return image.astype(dtype_out)
|
|
|
|
|
|
def ffmpeg_installed() -> bool:
|
|
if wasm_utils.IS_WASM:
|
|
# TODO: Support ffmpeg in WASM
|
|
return False
|
|
|
|
return shutil.which("ffmpeg") is not None
|
|
|
|
|
|
def video_is_playable(video_filepath: str) -> bool:
|
|
"""Determines if a video is playable in the browser.
|
|
|
|
A video is playable if it has a playable container and codec.
|
|
.mp4 -> h264
|
|
.webm -> vp9
|
|
.ogg -> theora
|
|
"""
|
|
try:
|
|
container = Path(video_filepath).suffix.lower()
|
|
probe = FFprobe(
|
|
global_options="-show_format -show_streams -select_streams v -print_format json",
|
|
inputs={video_filepath: None},
|
|
)
|
|
output = probe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
|
|
output = json.loads(output[0])
|
|
video_codec = output["streams"][0]["codec_name"]
|
|
return (container, video_codec) in [
|
|
(".mp4", "h264"),
|
|
(".ogg", "theora"),
|
|
(".webm", "vp9"),
|
|
]
|
|
# If anything goes wrong, assume the video can be played to not convert downstream
|
|
except (FFRuntimeError, IndexError, KeyError):
|
|
return True
|
|
|
|
|
|
def convert_video_to_playable_mp4(video_path: str) -> str:
|
|
"""Convert the video to mp4. If something goes wrong return the original video."""
|
|
try:
|
|
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
|
output_path = Path(video_path).with_suffix(".mp4")
|
|
shutil.copy2(video_path, tmp_file.name)
|
|
# ffmpeg will automatically use h264 codec (playable in browser) when converting to mp4
|
|
ff = FFmpeg(
|
|
inputs={str(tmp_file.name): None},
|
|
outputs={str(output_path): None},
|
|
global_options="-y -loglevel quiet",
|
|
)
|
|
ff.run()
|
|
except FFRuntimeError as e:
|
|
print(f"Error converting video to browser-playable format {str(e)}")
|
|
output_path = video_path
|
|
finally:
|
|
# Remove temp file
|
|
os.remove(tmp_file.name) # type: ignore
|
|
return str(output_path)
|