mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
7.8 KiB
7.8 KiB
In [1]:
%load_ext autoreload %autoreload 2 from sklearn import datasets, svm import gradio import matplotlib.pyplot as plt # The digits dataset digits = datasets.load_digits()
In [2]:
# To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2])
Out[2]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
In [3]:
data.max()
Out[3]:
16.0
In [4]:
images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label)
In [5]:
classifier.predict()
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-5-043f82e0ca32> in <module> ----> 1 classifier.predict() TypeError: predict() missing 1 required positional argument: 'X'
In [ ]:
expected = digits.target[n_samples // 2:] predicted = classifier.predict(data[n_samples // 2:])
In [ ]:
inp = gradio.inputs.Sketchpad(shape=(8, 8), flatten=True, scale=16/255, invert_colors=False) io = gradio.Interface(inputs=inp, outputs="label", model_type="sklearn", model=classifier)
In [ ]:
io.launch()
In [ ]: