mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-15 02:11:15 +08:00
fe40308894
* Code * add changeset * remove comment * Add back try except * Add code * Use warning * Use warning --------- Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com>
330 lines
13 KiB
Python
330 lines
13 KiB
Python
import os
|
|
import shutil
|
|
import tempfile
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import ffmpy
|
|
import numpy as np
|
|
import pytest
|
|
from gradio_client import media_data
|
|
from PIL import Image, ImageCms
|
|
|
|
from gradio import processing_utils, utils
|
|
|
|
|
|
class TestTempFileManagement:
|
|
def test_hash_file(self):
|
|
h1 = processing_utils.hash_file("gradio/test_data/cheetah1.jpg")
|
|
h2 = processing_utils.hash_file("gradio/test_data/cheetah1-copy.jpg")
|
|
h3 = processing_utils.hash_file("gradio/test_data/cheetah2.jpg")
|
|
assert h1 == h2
|
|
assert h1 != h3
|
|
|
|
def test_make_temp_copy_if_needed(self, gradio_temp_dir):
|
|
f = processing_utils.save_file_to_cache(
|
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir
|
|
)
|
|
try: # Delete if already exists from before this test
|
|
os.remove(f)
|
|
except OSError:
|
|
pass
|
|
|
|
f = processing_utils.save_file_to_cache(
|
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
assert Path(f).name == "cheetah1.jpg"
|
|
|
|
f = processing_utils.save_file_to_cache(
|
|
"gradio/test_data/cheetah1.jpg", cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
f = processing_utils.save_file_to_cache(
|
|
"gradio/test_data/cheetah1-copy.jpg", cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2
|
|
assert Path(f).name == "cheetah1-copy.jpg"
|
|
|
|
def test_save_b64_to_cache(self, gradio_temp_dir):
|
|
base64_file_1 = media_data.BASE64_IMAGE
|
|
base64_file_2 = media_data.BASE64_AUDIO["data"]
|
|
|
|
f = processing_utils.save_base64_to_cache(
|
|
base64_file_1, cache_dir=gradio_temp_dir
|
|
)
|
|
try: # Delete if already exists from before this test
|
|
os.remove(f)
|
|
except OSError:
|
|
pass
|
|
|
|
f = processing_utils.save_base64_to_cache(
|
|
base64_file_1, cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
f = processing_utils.save_base64_to_cache(
|
|
base64_file_1, cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
f = processing_utils.save_base64_to_cache(
|
|
base64_file_2, cache_dir=gradio_temp_dir
|
|
)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2
|
|
|
|
@pytest.mark.flaky
|
|
def test_save_url_to_cache(self, gradio_temp_dir):
|
|
url1 = "https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/test_image.png"
|
|
url2 = "https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/cheetah1.jpg"
|
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir)
|
|
try: # Delete if already exists from before this test
|
|
os.remove(f)
|
|
except OSError:
|
|
pass
|
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
f = processing_utils.save_url_to_cache(url1, cache_dir=gradio_temp_dir)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
f = processing_utils.save_url_to_cache(url2, cache_dir=gradio_temp_dir)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 2
|
|
|
|
def test_save_url_to_cache_with_spaces(self, gradio_temp_dir):
|
|
url = "https://huggingface.co/datasets/freddyaboulton/gradio-reviews/resolve/main00015-20230906102032-7778-Wonderwoman VintageMagStyle _lora_SDXL-VintageMagStyle-Lora_1_, Very detailed, clean, high quality, sharp image.jpg"
|
|
processing_utils.save_url_to_cache(url, cache_dir=gradio_temp_dir)
|
|
assert len([f for f in gradio_temp_dir.glob("**/*") if f.is_file()]) == 1
|
|
|
|
|
|
class TestImagePreprocessing:
|
|
def test_encode_plot_to_base64(self):
|
|
with utils.MatplotlibBackendMananger():
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.plot([1, 2, 3, 4])
|
|
output_base64 = processing_utils.encode_plot_to_base64(plt)
|
|
assert output_base64.startswith(
|
|
""
|
|
)
|
|
|
|
def test_encode_array_to_base64(self):
|
|
img = Image.open("gradio/test_data/test_image.png")
|
|
img = img.convert("RGB")
|
|
numpy_data = np.asarray(img, dtype=np.uint8)
|
|
output_base64 = processing_utils.encode_array_to_base64(numpy_data)
|
|
assert output_base64 == deepcopy(media_data.ARRAY_TO_BASE64_IMAGE)
|
|
|
|
def test_encode_pil_to_base64(self):
|
|
img = Image.open("gradio/test_data/test_image.png")
|
|
img = img.convert("RGB")
|
|
img.info = {} # Strip metadata
|
|
output_base64 = processing_utils.encode_pil_to_base64(img)
|
|
assert output_base64 == deepcopy(media_data.ARRAY_TO_BASE64_IMAGE)
|
|
|
|
def test_save_pil_to_file_keeps_pnginfo(self, gradio_temp_dir):
|
|
input_img = Image.open("gradio/test_data/test_image.png")
|
|
input_img = input_img.convert("RGB")
|
|
input_img.info = {"key1": "value1", "key2": "value2"}
|
|
input_img.save(gradio_temp_dir / "test_test_image.png")
|
|
|
|
file_obj = processing_utils.save_pil_to_cache(
|
|
input_img, cache_dir=gradio_temp_dir
|
|
)
|
|
output_img = Image.open(file_obj)
|
|
|
|
assert output_img.info == input_img.info
|
|
|
|
def test_np_pil_encode_to_the_same(self, gradio_temp_dir):
|
|
arr = np.random.randint(0, 255, size=(100, 100, 3), dtype=np.uint8)
|
|
pil = Image.fromarray(arr)
|
|
assert processing_utils.save_pil_to_cache(
|
|
pil, cache_dir=gradio_temp_dir
|
|
) == processing_utils.save_img_array_to_cache(arr, cache_dir=gradio_temp_dir)
|
|
|
|
def test_encode_pil_to_temp_file_metadata_color_profile(self, gradio_temp_dir):
|
|
# Read image
|
|
img = Image.open("gradio/test_data/test_image.png")
|
|
img_metadata = Image.open("gradio/test_data/test_image.png")
|
|
img_metadata.info = {"key1": "value1", "key2": "value2"}
|
|
|
|
# Creating sRGB profile
|
|
profile = ImageCms.createProfile("sRGB")
|
|
profile2 = ImageCms.ImageCmsProfile(profile)
|
|
img.save(
|
|
gradio_temp_dir / "img_color_profile.png", icc_profile=profile2.tobytes()
|
|
)
|
|
img_cp1 = Image.open(str(gradio_temp_dir / "img_color_profile.png"))
|
|
|
|
# Creating XYZ profile
|
|
profile = ImageCms.createProfile("XYZ")
|
|
profile2 = ImageCms.ImageCmsProfile(profile)
|
|
img.save(
|
|
gradio_temp_dir / "img_color_profile_2.png", icc_profile=profile2.tobytes()
|
|
)
|
|
img_cp2 = Image.open(str(gradio_temp_dir / "img_color_profile_2.png"))
|
|
|
|
img_path = processing_utils.save_pil_to_cache(img, cache_dir=gradio_temp_dir)
|
|
img_metadata_path = processing_utils.save_pil_to_cache(
|
|
img_metadata, cache_dir=gradio_temp_dir
|
|
)
|
|
img_cp1_path = processing_utils.save_pil_to_cache(
|
|
img_cp1, cache_dir=gradio_temp_dir
|
|
)
|
|
img_cp2_path = processing_utils.save_pil_to_cache(
|
|
img_cp2, cache_dir=gradio_temp_dir
|
|
)
|
|
assert len({img_path, img_metadata_path, img_cp1_path, img_cp2_path}) == 4
|
|
|
|
def test_resize_and_crop(self):
|
|
img = Image.open("gradio/test_data/test_image.png")
|
|
new_img = processing_utils.resize_and_crop(img, (20, 20))
|
|
assert new_img.size == (20, 20)
|
|
with pytest.raises(ValueError):
|
|
processing_utils.resize_and_crop(
|
|
**{"img": img, "size": (20, 20), "crop_type": "test"}
|
|
)
|
|
|
|
|
|
class TestAudioPreprocessing:
|
|
def test_audio_from_file(self):
|
|
audio = processing_utils.audio_from_file("gradio/test_data/test_audio.wav")
|
|
assert audio[0] == 22050
|
|
assert isinstance(audio[1], np.ndarray)
|
|
|
|
def test_audio_to_file(self):
|
|
audio = processing_utils.audio_from_file("gradio/test_data/test_audio.wav")
|
|
processing_utils.audio_to_file(audio[0], audio[1], "test_audio_to_file")
|
|
assert os.path.exists("test_audio_to_file")
|
|
os.remove("test_audio_to_file")
|
|
|
|
def test_convert_to_16_bit_wav(self):
|
|
# Generate a random audio sample and set the amplitude
|
|
audio = np.random.randint(-100, 100, size=(100), dtype="int16")
|
|
audio[0] = -32767
|
|
audio[1] = 32766
|
|
|
|
audio_ = audio.astype("float64")
|
|
audio_ = processing_utils.convert_to_16_bit_wav(audio_)
|
|
assert np.allclose(audio, audio_)
|
|
assert audio_.dtype == "int16"
|
|
|
|
audio_ = audio.astype("float32")
|
|
audio_ = processing_utils.convert_to_16_bit_wav(audio_)
|
|
assert np.allclose(audio, audio_)
|
|
assert audio_.dtype == "int16"
|
|
|
|
audio_ = processing_utils.convert_to_16_bit_wav(audio)
|
|
assert np.allclose(audio, audio_)
|
|
assert audio_.dtype == "int16"
|
|
|
|
|
|
class TestOutputPreprocessing:
|
|
float_dtype_list = [
|
|
float,
|
|
float,
|
|
np.double,
|
|
np.single,
|
|
np.float32,
|
|
np.float64,
|
|
"float32",
|
|
"float64",
|
|
]
|
|
|
|
def test_float_conversion_dtype(self):
|
|
"""Test any conversion from a float dtype to an other."""
|
|
|
|
x = np.array([-1, 1])
|
|
# Test all combinations of dtypes conversions
|
|
dtype_combin = np.array(
|
|
np.meshgrid(
|
|
TestOutputPreprocessing.float_dtype_list,
|
|
TestOutputPreprocessing.float_dtype_list,
|
|
)
|
|
).T.reshape(-1, 2)
|
|
|
|
for dtype_in, dtype_out in dtype_combin:
|
|
x = x.astype(dtype_in)
|
|
y = processing_utils._convert(x, dtype_out)
|
|
assert y.dtype == np.dtype(dtype_out)
|
|
|
|
def test_subclass_conversion(self):
|
|
"""Check subclass conversion behavior"""
|
|
x = np.array([-1, 1])
|
|
for dtype in TestOutputPreprocessing.float_dtype_list:
|
|
x = x.astype(dtype)
|
|
y = processing_utils._convert(x, np.floating)
|
|
assert y.dtype == x.dtype
|
|
|
|
|
|
class TestVideoProcessing:
|
|
def test_video_has_playable_codecs(self, test_file_dir):
|
|
assert processing_utils.video_is_playable(
|
|
str(test_file_dir / "video_sample.mp4")
|
|
)
|
|
assert processing_utils.video_is_playable(
|
|
str(test_file_dir / "video_sample.ogg")
|
|
)
|
|
assert processing_utils.video_is_playable(
|
|
str(test_file_dir / "video_sample.webm")
|
|
)
|
|
assert not processing_utils.video_is_playable(
|
|
str(test_file_dir / "bad_video_sample.mp4")
|
|
)
|
|
|
|
def raise_ffmpy_runtime_exception(*args, **kwargs):
|
|
raise ffmpy.FFRuntimeError("", "", "", "")
|
|
|
|
@pytest.mark.parametrize(
|
|
"exception_to_raise", [raise_ffmpy_runtime_exception, KeyError(), IndexError()]
|
|
)
|
|
def test_video_has_playable_codecs_catches_exceptions(
|
|
self, exception_to_raise, test_file_dir
|
|
):
|
|
with patch(
|
|
"ffmpy.FFprobe.run", side_effect=exception_to_raise
|
|
), tempfile.NamedTemporaryFile(
|
|
suffix="out.avi", delete=False
|
|
) as tmp_not_playable_vid:
|
|
shutil.copy(
|
|
str(test_file_dir / "bad_video_sample.mp4"),
|
|
tmp_not_playable_vid.name,
|
|
)
|
|
assert processing_utils.video_is_playable(tmp_not_playable_vid.name)
|
|
|
|
def test_convert_video_to_playable_mp4(self, test_file_dir):
|
|
with tempfile.NamedTemporaryFile(
|
|
suffix="out.avi", delete=False
|
|
) as tmp_not_playable_vid:
|
|
shutil.copy(
|
|
str(test_file_dir / "bad_video_sample.mp4"), tmp_not_playable_vid.name
|
|
)
|
|
with patch("os.remove", wraps=os.remove) as mock_remove:
|
|
playable_vid = processing_utils.convert_video_to_playable_mp4(
|
|
tmp_not_playable_vid.name
|
|
)
|
|
# check tempfile got deleted
|
|
assert not Path(mock_remove.call_args[0][0]).exists()
|
|
assert processing_utils.video_is_playable(playable_vid)
|
|
|
|
@patch("ffmpy.FFmpeg.run", side_effect=raise_ffmpy_runtime_exception)
|
|
def test_video_conversion_returns_original_video_if_fails(
|
|
self, mock_run, test_file_dir
|
|
):
|
|
with tempfile.NamedTemporaryFile(
|
|
suffix="out.avi", delete=False
|
|
) as tmp_not_playable_vid:
|
|
shutil.copy(
|
|
str(test_file_dir / "bad_video_sample.mp4"), tmp_not_playable_vid.name
|
|
)
|
|
playable_vid = processing_utils.convert_video_to_playable_mp4(
|
|
tmp_not_playable_vid.name
|
|
)
|
|
# If the conversion succeeded it'd be .mp4
|
|
assert Path(playable_vid).suffix == ".avi"
|