gradio/test/test_inputs.py

65 lines
14 KiB
Python

import unittest
import os
from gradio import inputs
BASE64_IMG = ""
RAND_STRING = "2wBDAAYEBQYFBAYGBQYHBwYIC"
PACKAGE_NAME = 'gradio'
class TestSketchpad(unittest.TestCase):
def test_path_exists(self):
inp = inputs.Sketchpad()
path = inputs.BASE_INPUT_INTERFACE_TEMPLATE_PATH.format(inp.get_name())
self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path)))
def test_preprocessing(self):
inp = inputs.Sketchpad()
array = inp.preprocess(BASE64_IMG)
self.assertEqual(array.shape, (1, 28, 28))
class TestWebcam(unittest.TestCase):
def test_path_exists(self):
inp = inputs.Webcam()
path = inputs.BASE_INPUT_INTERFACE_TEMPLATE_PATH.format(inp.get_name())
self.assertFalse(os.path.exists(os.path.join(PACKAGE_NAME, path))) # Note implemented yet.
def test_preprocessing(self):
inp = inputs.Webcam()
array = inp.preprocess(BASE64_IMG)
self.assertEqual(array.shape, (1, 224, 224, 3))
class TestTextbox(unittest.TestCase):
def test_path_exists(self):
inp = inputs.Textbox()
path = inputs.BASE_INPUT_INTERFACE_TEMPLATE_PATH.format(inp.get_name())
self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path)))
def test_preprocessing(self):
inp = inputs.Textbox()
string = inp.preprocess(RAND_STRING)
self.assertEqual(string, RAND_STRING)
class TestImageUpload(unittest.TestCase):
def test_path_exists(self):
inp = inputs.ImageUpload()
path = inputs.BASE_INPUT_INTERFACE_TEMPLATE_PATH.format(inp.get_name())
self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path)))
def test_preprocessing(self):
inp = inputs.ImageUpload()
array = inp.preprocess(BASE64_IMG)
self.assertEqual(array.shape, (1, 224, 224, 3))
def test_preprocessing(self):
inp = inputs.ImageUpload(image_height=48, image_width=48)
array = inp.preprocess(BASE64_IMG)
self.assertEqual(array.shape, (1, 48, 48, 3))
if __name__ == '__main__':
unittest.main()