gradio/test/test_components.py
Ömer Faruk Özdemir ceee0fce9e blocks-components-test
- use deepcopy in the remaining tests as well
- update a failing test
- add processing utils to init for IDE to identify the function
2022-04-05 13:08:53 +03:00

1497 lines
55 KiB
Python

import json
import os
import tempfile
import unittest
from copy import deepcopy
from difflib import SequenceMatcher
from test.test_data import media_data
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import PIL
import gradio as gr
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
"""
Tests are divided into two
1. test_component_functionalities are unit tests that check essential functions of a component, the functions that are checked are documented in the docstring.
2. test_in_interface_... are functional tests that check a component's functionalities inside an Interface. Please do not use Interface.launch() in this file, as it slow downs the tests.
"""
class TestTextbox(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, serialize, save_flagged, restore_flagged, tokenize, generate_sample, get_template_context
"""
text_input = gr.Textbox()
self.assertEqual(text_input.preprocess("Hello World!"), "Hello World!")
self.assertEqual(text_input.preprocess_example("Hello World!"), "Hello World!")
self.assertEqual(text_input.postprocess(None), None)
self.assertEqual(text_input.postprocess("Ali"), "Ali")
self.assertEqual(text_input.postprocess(2), "2")
self.assertEqual(text_input.postprocess(2.14), "2.14")
self.assertEqual(text_input.serialize("Hello World!", True), "Hello World!")
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = text_input.save_flagged(
tmpdirname, "text_input", "Hello World!", None
)
self.assertEqual(to_save, "Hello World!")
restored = text_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "Hello World!")
with self.assertWarns(DeprecationWarning):
_ = gr.Textbox(type="number")
self.assertEqual(
text_input.tokenize("Hello World! Gradio speaking."),
(
["Hello", "World!", "Gradio", "speaking."],
[
"World! Gradio speaking.",
"Hello Gradio speaking.",
"Hello World! speaking.",
"Hello World! Gradio",
],
None,
),
)
text_input.interpretation_replacement = "unknown"
self.assertEqual(
text_input.tokenize("Hello World! Gradio speaking."),
(
["Hello", "World!", "Gradio", "speaking."],
[
"unknown World! Gradio speaking.",
"Hello unknown Gradio speaking.",
"Hello World! unknown speaking.",
"Hello World! Gradio unknown",
],
None,
),
)
self.assertEqual(
text_input.get_template_context(),
{
"lines": 1,
"placeholder": None,
"default_value": "",
"name": "textbox",
"label": None,
"css": {},
},
)
self.assertIsInstance(text_input.generate_sample(), str)
def test_in_interface_as_input(self):
"""
Interface, process, interpret,
"""
iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox")
self.assertEqual(iface.process(["Hello"])[0], ["olleH"])
iface = gr.Interface(
lambda sentence: max([len(word) for word in sentence.split()]),
gr.Textbox(),
"number",
interpretation="default",
)
scores, alternative_outputs = iface.interpret(
["Return the length of the longest word in this sentence"]
)
self.assertEqual(
scores,
[
[
("Return", 0.0),
(" ", 0),
("the", 0.0),
(" ", 0),
("length", 0.0),
(" ", 0),
("of", 0.0),
(" ", 0),
("the", 0.0),
(" ", 0),
("longest", 0.0),
(" ", 0),
("word", 0.0),
(" ", 0),
("in", 0.0),
(" ", 0),
("this", 0.0),
(" ", 0),
("sentence", 1.0),
(" ", 0),
]
],
)
self.assertEqual(
alternative_outputs,
[[[8], [8], [8], [8], [8], [8], [8], [8], [8], [7]]],
)
def test_in_interface_as_output(self):
"""
Interface, process
"""
iface = gr.Interface(lambda x: x[-1], "textbox", gr.Textbox())
self.assertEqual(iface.process(["Hello"])[0], ["o"])
iface = gr.Interface(lambda x: x / 2, "number", gr.Textbox())
self.assertEqual(iface.process([10])[0], ["5.0"])
class TestNumber(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, set_interpret_parameters, get_interpretation_neighbors, get_template_context
"""
numeric_input = gr.Number()
self.assertEqual(numeric_input.preprocess(3), 3.0)
self.assertEqual(numeric_input.preprocess(None), None)
self.assertEqual(numeric_input.preprocess_example(3), 3)
self.assertEqual(numeric_input.postprocess(3), 3.0)
self.assertEqual(numeric_input.postprocess(2.14), 2.14)
self.assertEqual(numeric_input.postprocess(None), None)
self.assertEqual(numeric_input.serialize(3, True), 3)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = numeric_input.save_flagged(tmpdirname, "numeric_input", 3, None)
self.assertEqual(to_save, 3)
restored = numeric_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, 3)
self.assertIsInstance(numeric_input.generate_sample(), float)
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute")
self.assertEqual(
numeric_input.get_interpretation_neighbors(1),
([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}),
)
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent")
self.assertEqual(
numeric_input.get_interpretation_neighbors(1),
([0.97, 0.98, 0.99, 1.01, 1.02, 1.03], {}),
)
self.assertEqual(
numeric_input.get_template_context(),
{"default_value": None, "name": "number", "label": None, "css": {}},
)
def test_in_interface_as_input(self):
"""
Interface, process, interpret
"""
iface = gr.Interface(lambda x: x**2, "number", "textbox")
self.assertEqual(iface.process([2])[0], ["4.0"])
iface = gr.Interface(
lambda x: x**2, "number", "number", interpretation="default"
)
scores, alternative_outputs = iface.interpret([2])
self.assertEqual(
scores,
[
[
(1.94, -0.23640000000000017),
(1.96, -0.15840000000000032),
(1.98, -0.07960000000000012),
[2, None],
(2.02, 0.08040000000000003),
(2.04, 0.16159999999999997),
(2.06, 0.24359999999999982),
]
],
)
self.assertEqual(
alternative_outputs,
[
[
[3.7636],
[3.8415999999999997],
[3.9204],
[4.0804],
[4.1616],
[4.2436],
]
],
)
def test_in_interface_as_output(self):
"""
Interface, process, interpret
"""
iface = gr.Interface(lambda x: int(x) ** 2, "textbox", "number")
self.assertEqual(iface.process([2])[0], [4.0])
iface = gr.Interface(
lambda x: x**2, "number", "number", interpretation="default"
)
scores, alternative_outputs = iface.interpret([2])
self.assertEqual(
scores,
[
[
(1.94, -0.23640000000000017),
(1.96, -0.15840000000000032),
(1.98, -0.07960000000000012),
[2, None],
(2.02, 0.08040000000000003),
(2.04, 0.16159999999999997),
(2.06, 0.24359999999999982),
]
],
)
self.assertEqual(
alternative_outputs,
[
[
[3.7636],
[3.8415999999999997],
[3.9204],
[4.0804],
[4.1616],
[4.2436],
]
],
)
class TestSlider(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context
"""
slider_input = gr.Slider()
self.assertEqual(slider_input.preprocess(3.0), 3.0)
self.assertEqual(slider_input.preprocess_example(3), 3)
self.assertEqual(slider_input.postprocess(3), 3)
self.assertEqual(slider_input.postprocess(None), None)
self.assertEqual(slider_input.serialize(3, True), 3)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = slider_input.save_flagged(tmpdirname, "slider_input", 3, None)
self.assertEqual(to_save, 3)
restored = slider_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, 3)
self.assertIsInstance(slider_input.generate_sample(), int)
slider_input = gr.Slider(
default_value=15, minimum=10, maximum=20, step=1, label="Slide Your Input"
)
self.assertEqual(
slider_input.get_template_context(),
{
"minimum": 10,
"maximum": 20,
"step": 1,
"default_value": 15,
"name": "slider",
"label": "Slide Your Input",
"css": {},
},
)
def test_in_interface(self):
""" "
Interface, process, interpret
"""
iface = gr.Interface(lambda x: x**2, "slider", "textbox")
self.assertEqual(iface.process([2])[0], ["4"])
iface = gr.Interface(
lambda x: x**2, "slider", "number", interpretation="default"
)
scores, alternative_outputs = iface.interpret([2])
self.assertEqual(
scores,
[
[
-4.0,
200.08163265306123,
812.3265306122449,
1832.7346938775513,
3261.3061224489797,
5098.040816326531,
7342.938775510205,
9996.0,
]
],
)
self.assertEqual(
alternative_outputs,
[
[
[0.0],
[204.08163265306123],
[816.3265306122449],
[1836.7346938775513],
[3265.3061224489797],
[5102.040816326531],
[7346.938775510205],
[10000.0],
]
],
)
class TestCheckbox(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, serialize, generate_sample, get_template_context
"""
bool_input = gr.Checkbox()
self.assertEqual(bool_input.preprocess(True), True)
self.assertEqual(bool_input.preprocess_example(True), True)
self.assertEqual(bool_input.postprocess(True), True)
self.assertEqual(bool_input.serialize(True, True), True)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = bool_input.save_flagged(tmpdirname, "bool_input", True, None)
self.assertEqual(to_save, True)
restored = bool_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, True)
self.assertIsInstance(bool_input.generate_sample(), bool)
bool_input = gr.Checkbox(default_value=True, label="Check Your Input")
self.assertEqual(
bool_input.get_template_context(),
{
"default_value": True,
"name": "checkbox",
"label": "Check Your Input",
"css": {},
},
)
def test_in_interface(self):
"""
Interface, process, interpret
"""
iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "number")
self.assertEqual(iface.process([True])[0], [1])
iface = gr.Interface(
lambda x: 1 if x else 0, "checkbox", "number", interpretation="default"
)
scores, alternative_outputs = iface.interpret([False])
self.assertEqual(scores, [(None, 1.0)])
self.assertEqual(alternative_outputs, [[[1]]])
scores, alternative_outputs = iface.interpret([True])
self.assertEqual(scores, [(-1.0, None)])
self.assertEqual(alternative_outputs, [[[0]]])
class TestCheckboxGroup(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, preprocess_example, serialize, save_flagged, restore_flagged, generate_sample, get_template_context
"""
checkboxes_input = gr.CheckboxGroup(["a", "b", "c"])
self.assertEqual(checkboxes_input.preprocess(["a", "c"]), ["a", "c"])
self.assertEqual(checkboxes_input.preprocess_example(["a", "c"]), ["a", "c"])
self.assertEqual(checkboxes_input.serialize(["a", "c"], True), ["a", "c"])
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = checkboxes_input.save_flagged(
tmpdirname, "checkboxes_input", ["a", "c"], None
)
self.assertEqual(to_save, '["a", "c"]')
restored = checkboxes_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, ["a", "c"])
self.assertIsInstance(checkboxes_input.generate_sample(), list)
checkboxes_input = gr.CheckboxGroup(
default_selected=["a", "c"],
choices=["a", "b", "c"],
label="Check Your Inputs",
)
self.assertEqual(
checkboxes_input.get_template_context(),
{
"choices": ["a", "b", "c"],
"default_value": ["a", "c"],
"name": "checkboxgroup",
"label": "Check Your Inputs",
"css": {},
},
)
with self.assertRaises(ValueError):
wrong_type = gr.CheckboxGroup(["a"], type="unknown")
wrong_type.preprocess(0)
def test_in_interface(self):
"""
Interface, process
"""
checkboxes_input = gr.CheckboxGroup(["a", "b", "c"])
iface = gr.Interface(lambda x: "|".join(x), checkboxes_input, "textbox")
self.assertEqual(iface.process([["a", "c"]])[0], ["a|c"])
self.assertEqual(iface.process([[]])[0], [""])
_ = gr.CheckboxGroup(["a", "b", "c"], type="index")
class TestRadio(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, preprocess_example, serialize, save_flagged, generate_sample, get_template_context
"""
radio_input = gr.Radio(["a", "b", "c"])
self.assertEqual(radio_input.preprocess("c"), "c")
self.assertEqual(radio_input.preprocess_example("a"), "a")
self.assertEqual(radio_input.serialize("a", True), "a")
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = radio_input.save_flagged(tmpdirname, "radio_input", "a", None)
self.assertEqual(to_save, "a")
restored = radio_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "a")
self.assertIsInstance(radio_input.generate_sample(), str)
radio_input = gr.Radio(
choices=["a", "b", "c"], default="a", label="Pick Your One Input"
)
self.assertEqual(
radio_input.get_template_context(),
{
"choices": ["a", "b", "c"],
"default_value": "a",
"name": "radio",
"label": "Pick Your One Input",
"css": {},
},
)
with self.assertRaises(ValueError):
wrong_type = gr.Radio(["a", "b"], type="unknown")
wrong_type.preprocess(0)
def test_in_interface(self):
"""
Interface, process, interpret
"""
radio_input = gr.Radio(["a", "b", "c"])
iface = gr.Interface(lambda x: 2 * x, radio_input, "textbox")
self.assertEqual(iface.process(["c"])[0], ["cc"])
radio_input = gr.Radio(["a", "b", "c"], type="index")
iface = gr.Interface(
lambda x: 2 * x, radio_input, "number", interpretation="default"
)
self.assertEqual(iface.process(["c"])[0], [4])
scores, alternative_outputs = iface.interpret(["b"])
self.assertEqual(scores, [[-2.0, None, 2.0]])
self.assertEqual(alternative_outputs, [[[0], [4]]])
class TestImage(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context, _segment_by_slic
type: pil, file, filepath, numpy
"""
img = deepcopy(media_data.BASE64_IMAGE)
image_input = gr.Image()
self.assertEqual(image_input.preprocess(img).shape, (68, 61, 3))
image_input = gr.Image(shape=(25, 25), image_mode="L")
self.assertEqual(image_input.preprocess(img).shape, (25, 25))
image_input = gr.Image(shape=(30, 10), type="pil")
self.assertEqual(image_input.preprocess(img).size, (30, 10))
self.assertEqual(image_input.preprocess_example("test/test_files/bus.png"), img)
self.assertEqual(image_input.serialize("test/test_files/bus.png", True), img)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = image_input.save_flagged(tmpdirname, "image_input", img, None)
self.assertEqual("image_input/0.png", to_save)
to_save = image_input.save_flagged(tmpdirname, "image_input", img, None)
self.assertEqual("image_input/1.png", to_save)
restored = image_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "image_input/1.png")
self.assertIsInstance(image_input.generate_sample(), str)
image_input = gr.Image(
source="upload", tool="editor", type="pil", label="Upload Your Image"
)
self.assertEqual(
image_input.get_template_context(),
{
"image_mode": "RGB",
"shape": None,
"source": "upload",
"tool": "editor",
"name": "image",
"label": "Upload Your Image",
"css": {},
"default_value": None,
},
)
self.assertIsNone(image_input.preprocess(None))
image_input = gr.Image(invert_colors=True)
self.assertIsNotNone(image_input.preprocess(img))
image_input.preprocess(img)
with self.assertWarns(DeprecationWarning):
file_image = gr.Image(type="file")
file_image.preprocess(deepcopy(media_data.BASE64_IMAGE))
file_image = gr.Image(type="filepath")
self.assertIsInstance(file_image.preprocess(img), str)
with self.assertRaises(ValueError):
wrong_type = gr.Image(type="unknown")
wrong_type.preprocess(img)
with self.assertRaises(ValueError):
wrong_type = gr.Image(type="unknown")
wrong_type.serialize("test/test_files/bus.png", False)
img_pil = PIL.Image.open("test/test_files/bus.png")
image_input = gr.Image(type="numpy")
self.assertIsInstance(image_input.serialize(img_pil, False), str)
image_input = gr.Image(type="pil")
self.assertIsInstance(image_input.serialize(img_pil, False), str)
image_input = gr.Image(type="file")
with open("test/test_files/bus.png") as f:
self.assertEqual(image_input.serialize(f, False), img)
image_input.shape = (30, 10)
self.assertIsNotNone(image_input._segment_by_slic(img))
# Output functionalities
y_img = gr.processing_utils.decode_base64_to_image(
deepcopy(media_data.BASE64_IMAGE)
)
image_output = gr.Image()
self.assertTrue(
image_output.postprocess(y_img).startswith(
""
)
)
self.assertTrue(
image_output.postprocess(np.array(y_img)).startswith(
""
)
)
with self.assertWarns(DeprecationWarning):
plot_output = gr.Image(plot=True)
xpoints = np.array([0, 6])
ypoints = np.array([0, 250])
fig = plt.figure()
plt.plot(xpoints, ypoints)
self.assertTrue(
plot_output.postprocess(fig).startswith("data:image/png;base64,")
)
with self.assertRaises(ValueError):
image_output.postprocess([1, 2, 3])
image_output = gr.Image(type="numpy")
self.assertTrue(
image_output.postprocess(y_img).startswith("data:image/png;base64,")
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = image_output.save_flagged(
tmpdirname, "image_output", deepcopy(media_data.BASE64_IMAGE), None
)
self.assertEqual("image_output/0.png", to_save)
to_save = image_output.save_flagged(
tmpdirname, "image_output", deepcopy(media_data.BASE64_IMAGE), None
)
self.assertEqual("image_output/1.png", to_save)
def test_in_interface_as_input(self):
"""
Interface, process, interpret
type: file
interpretation: default, shap,
"""
img = deepcopy(media_data.BASE64_IMAGE)
image_input = gr.Image()
iface = gr.Interface(
lambda x: PIL.Image.open(x).rotate(90, expand=True),
gr.Image(shape=(30, 10), type="file"),
"image",
)
output = iface.process([img])[0][0]
self.assertEqual(
gr.processing_utils.decode_base64_to_image(output).size, (10, 30)
)
iface = gr.Interface(
lambda x: np.sum(x), image_input, "number", interpretation="default"
)
scores, alternative_outputs = iface.interpret([img])
self.assertEqual(
scores, deepcopy(media_data.SUM_PIXELS_INTERPRETATION)["scores"]
)
self.assertEqual(
alternative_outputs,
deepcopy(media_data.SUM_PIXELS_INTERPRETATION)["alternative_outputs"],
)
iface = gr.Interface(
lambda x: np.sum(x), image_input, "label", interpretation="shap"
)
scores, alternative_outputs = iface.interpret([img])
self.assertEqual(
len(scores[0]),
len(deepcopy(media_data.SUM_PIXELS_SHAP_INTERPRETATION)["scores"][0]),
)
self.assertEqual(
len(alternative_outputs[0]),
len(
deepcopy(media_data.SUM_PIXELS_SHAP_INTERPRETATION)[
"alternative_outputs"
][0]
),
)
image_input = gr.Image(shape=(30, 10))
iface = gr.Interface(
lambda x: np.sum(x), image_input, "number", interpretation="default"
)
self.assertIsNotNone(iface.interpret([img]))
def test_in_interface_as_output(self):
"""
Interface, process
"""
def generate_noise(width, height):
return np.random.randint(0, 256, (width, height, 3))
iface = gr.Interface(generate_noise, ["slider", "slider"], "image")
self.assertTrue(
iface.process([10, 20])[0][0].startswith("data:image/png;base64")
)
class TestAudio(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess serialize, save_flagged, restore_flagged, generate_sample, get_template_context, deserialize
type: filepath, numpy, file
"""
x_wav = deepcopy(media_data.BASE64_AUDIO)
audio_input = gr.Audio()
output = audio_input.preprocess(x_wav)
self.assertEqual(output[0], 8000)
self.assertEqual(output[1].shape, (8046,))
self.assertEqual(
audio_input.serialize("test/test_files/audio_sample.wav", True)["data"],
x_wav["data"],
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None)
self.assertEqual("audio_input/0.wav", to_save)
to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None)
self.assertEqual("audio_input/1.wav", to_save)
restored = audio_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "audio_input/1.wav")
self.assertIsInstance(audio_input.generate_sample(), dict)
audio_input = gr.Audio(label="Upload Your Audio")
self.assertEqual(
audio_input.get_template_context(),
{
"source": "upload",
"name": "audio",
"label": "Upload Your Audio",
"css": {},
"default_value": None,
},
)
self.assertIsNone(audio_input.preprocess(None))
x_wav["is_example"] = True
x_wav["crop_min"], x_wav["crop_max"] = 1, 4
self.assertIsNotNone(audio_input.preprocess(x_wav))
with self.assertWarns(DeprecationWarning):
audio_input = gr.Audio(type="file")
audio_input.preprocess(x_wav)
with open("test/test_files/audio_sample.wav") as f:
audio_input.serialize(f, False)
audio_input = gr.Audio(type="filepath")
self.assertIsInstance(audio_input.preprocess(x_wav), str)
with self.assertRaises(ValueError):
audio_input = gr.Audio(type="unknown")
audio_input.preprocess(x_wav)
audio_input.serialize(x_wav, False)
audio_input = gr.Audio(type="numpy")
x_wav = gr.processing_utils.audio_from_file("test/test_files/audio_sample.wav")
self.assertIsInstance(audio_input.serialize(x_wav, False), dict)
# Output functionalities
y_audio = gr.processing_utils.decode_base64_to_file(
deepcopy(media_data.BASE64_AUDIO)["data"]
)
audio_output = gr.Audio(type="file")
self.assertTrue(
audio_output.postprocess(y_audio.name).startswith(
"data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA"
)
)
self.assertEqual(
audio_output.get_template_context(),
{
"name": "audio",
"label": None,
"source": "upload",
"css": {},
"default_value": None,
},
)
self.assertTrue(
audio_output.deserialize(
deepcopy(media_data.BASE64_AUDIO)["data"]
).endswith(".wav")
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = audio_output.save_flagged(
tmpdirname, "audio_output", deepcopy(media_data.BASE64_AUDIO), None
)
self.assertEqual("audio_output/0.wav", to_save)
to_save = audio_output.save_flagged(
tmpdirname, "audio_output", deepcopy(media_data.BASE64_AUDIO), None
)
self.assertEqual("audio_output/1.wav", to_save)
def test_tokenize(self):
"""
Tokenize, get_masked_inputs
"""
x_wav = deepcopy(media_data.BASE64_AUDIO)
audio_input = gr.Audio()
tokens, _, _ = audio_input.tokenize(x_wav)
self.assertEquals(len(tokens), audio_input.interpretation_segments)
x_new = audio_input.get_masked_inputs(tokens, [[1] * len(tokens)])[0]
similarity = SequenceMatcher(a=x_wav["data"], b=x_new).ratio()
self.assertGreater(similarity, 0.9)
# TODO: add test_in_interface_as_input
def test_in_interface_as_output(self):
"""
Interface, process
"""
def generate_noise(duration):
return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16)
iface = gr.Interface(generate_noise, "slider", "audio")
self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64"))
class TestFile(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context, default_value
"""
x_file = deepcopy(media_data.BASE64_FILE)
file_input = gr.File()
output = file_input.preprocess(x_file)
self.assertIsInstance(output, tempfile._TemporaryFileWrapper)
self.assertEqual(
file_input.serialize("test/test_files/sample_file.pdf", True),
"test/test_files/sample_file.pdf",
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None)
self.assertEqual("file_input/0", to_save)
to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None)
self.assertEqual("file_input/1", to_save)
restored = file_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "file_input/1")
self.assertIsInstance(file_input.generate_sample(), dict)
file_input = gr.File(label="Upload Your File")
self.assertEqual(
file_input.get_template_context(),
{
"file_count": "single",
"name": "file",
"label": "Upload Your File",
"css": {},
"default_value": None,
},
)
self.assertIsNone(file_input.preprocess(None))
x_file["is_example"] = True
self.assertIsNotNone(file_input.preprocess(x_file))
file_input = gr.File("test/test_files/sample_file.pdf")
self.assertEqual(
file_input.get_template_context(),
deepcopy(media_data.FILE_TEMPLATE_CONTEXT),
)
def test_in_interface_as_input(self):
"""
Interface, process
"""
x_file = deepcopy(media_data.BASE64_FILE)
def get_size_of_file(file_obj):
return os.path.getsize(file_obj.name)
iface = gr.Interface(get_size_of_file, "file", "number")
self.assertEqual(iface.process([[x_file]])[0], [10558])
def test_as_component_as_output(self):
"""
Interface, process, save_flagged,
"""
def write_file(content):
with open("test.txt", "w") as f:
f.write(content)
return "test.txt"
iface = gr.Interface(write_file, "text", "file")
self.assertDictEqual(
iface.process(["hello world"])[0][0],
{
"name": "test.txt",
"size": 11,
"data": "data:text/plain;base64,aGVsbG8gd29ybGQ=",
},
)
file_output = gr.File()
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = file_output.save_flagged(
tmpdirname, "file_output", [deepcopy(media_data.BASE64_FILE)], None
)
self.assertEqual("file_output/0", to_save)
to_save = file_output.save_flagged(
tmpdirname, "file_output", [deepcopy(media_data.BASE64_FILE)], None
)
self.assertEqual("file_output/1", to_save)
class TestDataframe(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context
"""
x_data = [["Tim", 12, False], ["Jan", 24, True]]
dataframe_input = gr.Dataframe(headers=["Name", "Age", "Member"])
output = dataframe_input.preprocess(x_data)
self.assertEqual(output["Age"][1], 24)
self.assertEqual(output["Member"][0], False)
self.assertEqual(dataframe_input.preprocess_example(x_data), x_data)
self.assertEqual(dataframe_input.serialize(x_data, True), x_data)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = dataframe_input.save_flagged(
tmpdirname, "dataframe_input", x_data, None
)
self.assertEqual(json.dumps(x_data), to_save)
restored = dataframe_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(x_data, restored)
self.assertIsInstance(dataframe_input.generate_sample(), list)
dataframe_input = gr.Dataframe(
headers=["Name", "Age", "Member"], label="Dataframe Input"
)
self.assertEqual(
dataframe_input.get_template_context(),
{
"headers": ["Name", "Age", "Member"],
"datatype": "str",
"row_count": 3,
"col_count": 3,
"col_width": None,
"default_value": [
[None, None, None],
[None, None, None],
[None, None, None],
],
"name": "dataframe",
"label": "Dataframe Input",
"max_rows": 20,
"max_cols": None,
"overflow_row_behaviour": "paginate",
"css": {},
},
)
dataframe_input = gr.Dataframe()
output = dataframe_input.preprocess(x_data)
self.assertEqual(output[1][1], 24)
with self.assertRaises(ValueError):
wrong_type = gr.Dataframe(type="unknown")
wrong_type.preprocess(x_data)
# Output functionalities
dataframe_output = gr.Dataframe()
output = dataframe_output.postprocess(np.zeros((2, 2)))
self.assertDictEqual(output, {"data": [[0, 0], [0, 0]]})
output = dataframe_output.postprocess([[1, 3, 5]])
self.assertDictEqual(output, {"data": [[1, 3, 5]]})
output = dataframe_output.postprocess(
pd.DataFrame([[2, True], [3, True], [4, False]], columns=["num", "prime"])
)
self.assertDictEqual(
output,
{"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]},
)
self.assertEqual(
dataframe_output.get_template_context(),
{
"headers": None,
"max_rows": 20,
"max_cols": None,
"overflow_row_behaviour": "paginate",
"name": "dataframe",
"label": None,
"css": {},
"datatype": "str",
"row_count": 3,
"col_count": 3,
"col_width": None,
"default_value": [
[None, None, None],
[None, None, None],
[None, None, None],
],
},
)
with self.assertRaises(ValueError):
wrong_type = gr.Dataframe(type="unknown")
wrong_type.postprocess(0)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = dataframe_output.save_flagged(
tmpdirname, "dataframe_output", output, None
)
self.assertEqual(
to_save,
json.dumps(
{
"headers": ["num", "prime"],
"data": [[2, True], [3, True], [4, False]],
}
),
)
self.assertEqual(
dataframe_output.restore_flagged(tmpdirname, to_save, None),
{
"headers": ["num", "prime"],
"data": [[2, True], [3, True], [4, False]],
},
)
def test_in_interface_as_input(self):
"""
Interface, process,
"""
x_data = [[1, 2, 3], [4, 5, 6]]
iface = gr.Interface(np.max, "numpy", "number")
self.assertEqual(iface.process([x_data])[0], [6])
x_data = [["Tim"], ["Jon"], ["Sal"]]
def get_last(my_list):
return my_list[-1]
iface = gr.Interface(get_last, "list", "text")
self.assertEqual(iface.process([x_data])[0], ["Sal"])
def test_in_interface_as_output(self):
"""
Interface, process
"""
def check_odd(array):
return array % 2 == 0
iface = gr.Interface(check_odd, "numpy", "numpy")
self.assertEqual(
iface.process([[2, 3, 4]])[0][0], {"data": [[True, False, True]]}
)
class TestVideo(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, serialize, deserialize, save_flagged, restore_flagged, generate_sample, get_template_context
"""
x_video = deepcopy(media_data.BASE64_VIDEO)
video_input = gr.Video()
output = video_input.preprocess(x_video)
self.assertIsInstance(output, str)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None)
self.assertEqual("video_input/0.mp4", to_save)
to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None)
self.assertEqual("video_input/1.mp4", to_save)
restored = video_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(restored, "video_input/1.mp4")
self.assertIsInstance(video_input.generate_sample(), dict)
video_input = gr.Video(label="Upload Your Video")
self.assertEqual(
video_input.get_template_context(),
{
"source": "upload",
"name": "video",
"label": "Upload Your Video",
"css": {},
"default_value": None,
},
)
self.assertIsNone(video_input.preprocess(None))
x_video["is_example"] = True
self.assertIsNotNone(video_input.preprocess(x_video))
video_input = gr.Video(type="avi")
self.assertEqual(video_input.preprocess(x_video)[-3:], "avi")
with self.assertRaises(NotImplementedError):
video_input.serialize(x_video, True)
# Output functionalities
y_vid_path = "test/test_files/video_sample.mp4"
video_output = gr.Video()
self.assertTrue(
video_output.postprocess(y_vid_path)["data"].startswith(
"data:video/mp4;base64,"
)
)
self.assertTrue(
video_output.deserialize(
deepcopy(media_data.BASE64_VIDEO)["data"]
).endswith(".mp4")
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = video_output.save_flagged(
tmpdirname, "video_output", deepcopy(media_data.BASE64_VIDEO), None
)
self.assertEqual("video_output/0.mp4", to_save)
to_save = video_output.save_flagged(
tmpdirname, "video_output", deepcopy(media_data.BASE64_VIDEO), None
)
self.assertEqual("video_output/1.mp4", to_save)
def test_in_interface_as_input(self):
"""
Interface, process
"""
x_video = deepcopy(media_data.BASE64_VIDEO)
iface = gr.Interface(lambda x: x, "video", "playable_video")
self.assertEqual(iface.process([x_video])[0][0]["data"], x_video["data"])
# TODO: test_in_interface_as_output
class TestTimeseries(unittest.TestCase):
def test_component_functionalities(self):
"""
Preprocess, postprocess, save_flagged, restore_flagged, generate_sample, get_template_context,
"""
timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"])
x_timeseries = {
"data": [[1] + [2] * len(timeseries_input.y)] * 4,
"headers": [timeseries_input.x] + timeseries_input.y,
}
output = timeseries_input.preprocess(x_timeseries)
self.assertIsInstance(output, pd.core.frame.DataFrame)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = timeseries_input.save_flagged(
tmpdirname, "video_input", x_timeseries, None
)
self.assertEqual(json.dumps(x_timeseries), to_save)
restored = timeseries_input.restore_flagged(tmpdirname, to_save, None)
self.assertEqual(x_timeseries, restored)
self.assertIsInstance(timeseries_input.generate_sample(), dict)
timeseries_input = gr.Timeseries(
x="time", y="retail", label="Upload Your Timeseries"
)
self.assertEqual(
timeseries_input.get_template_context(),
{
"x": "time",
"y": ["retail"],
"name": "timeseries",
"label": "Upload Your Timeseries",
"css": {},
"default_value": None,
},
)
self.assertIsNone(timeseries_input.preprocess(None))
x_timeseries["range"] = (0, 1)
self.assertIsNotNone(timeseries_input.preprocess(x_timeseries))
# Output functionalities
timeseries_output = gr.Timeseries(label="Disease")
self.assertEqual(
timeseries_output.get_template_context(),
{
"x": None,
"y": None,
"name": "timeseries",
"label": "Disease",
"css": {},
"default_value": None,
},
)
data = {"Name": ["Tom", "nick", "krish", "jack"], "Age": [20, 21, 19, 18]}
df = pd.DataFrame(data)
self.assertEqual(
timeseries_output.postprocess(df),
{
"headers": ["Name", "Age"],
"data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]],
},
)
timeseries_output = gr.Timeseries(y="Age", label="Disease")
output = timeseries_output.postprocess(df)
self.assertEqual(
output,
{
"headers": ["Name", "Age"],
"data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]],
},
)
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = timeseries_output.save_flagged(
tmpdirname, "timeseries_output", output, None
)
self.assertEqual(
to_save,
'{"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], '
'["jack", 18]]}',
)
self.assertEqual(
timeseries_output.restore_flagged(tmpdirname, to_save, None),
{
"headers": ["Name", "Age"],
"data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]],
},
)
# TODO: test_in_interface_as_input
def test_in_interface_as_output(self):
"""
Interface, process
"""
timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"])
x_timeseries = {
"data": [[1] + [2] * len(timeseries_input.y)] * 4,
"headers": [timeseries_input.x] + timeseries_input.y,
}
iface = gr.Interface(lambda x: x, timeseries_input, "dataframe")
self.assertEqual(
iface.process([x_timeseries])[0],
[
{
"headers": ["time", "retail", "food", "other"],
"data": [[1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2]],
}
],
)
class TestNames(unittest.TestCase):
# This test ensures that `components.get_component_instance()` works correctly when instantiating from components
def test_no_duplicate_uncased_names(self):
subclasses = gr.components.Component.__subclasses__()
unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses])
self.assertEqual(len(subclasses), len(unique_subclasses_uncased))
class TestLabel(unittest.TestCase):
def test_component_functionalities(self):
"""
Process, postprocess, deserialize, save_flagged, restore_flagged
"""
y = "happy"
label_output = gr.Label()
label = label_output.postprocess(y)
self.assertDictEqual(label, {"label": "happy"})
self.assertEqual(label_output.deserialize(y), y)
self.assertEqual(label_output.deserialize(label), y)
with tempfile.TemporaryDirectory() as tmpdir:
to_save = label_output.save_flagged(tmpdir, "label_output", label, None)
self.assertEqual(to_save, y)
y = {3: 0.7, 1: 0.2, 0: 0.1}
label_output = gr.Label()
label = label_output.postprocess(y)
self.assertDictEqual(
label,
{
"label": 3,
"confidences": [
{"label": 3, "confidence": 0.7},
{"label": 1, "confidence": 0.2},
{"label": 0, "confidence": 0.1},
],
},
)
label_output = gr.Label(num_top_classes=2)
label = label_output.postprocess(y)
self.assertDictEqual(
label,
{
"label": 3,
"confidences": [
{"label": 3, "confidence": 0.7},
{"label": 1, "confidence": 0.2},
],
},
)
with self.assertRaises(ValueError):
label_output.postprocess([1, 2, 3])
with tempfile.TemporaryDirectory() as tmpdir:
to_save = label_output.save_flagged(tmpdir, "label_output", label, None)
self.assertEqual(to_save, '{"3": 0.7, "1": 0.2}')
self.assertEqual(
label_output.restore_flagged(tmpdir, to_save, None),
{
"label": "3",
"confidences": [
{"label": "3", "confidence": 0.7},
{"label": "1", "confidence": 0.2},
],
},
)
self.assertEqual(
label_output.get_template_context(),
{"name": "label", "label": None, "css": {}},
)
def test_in_interface(self):
"""
Interface, process
"""
x_img = deepcopy(media_data.BASE64_IMAGE)
def rgb_distribution(img):
rgb_dist = np.mean(img, axis=(0, 1))
rgb_dist /= np.sum(rgb_dist)
rgb_dist = np.round(rgb_dist, decimals=2)
return {
"red": rgb_dist[0],
"green": rgb_dist[1],
"blue": rgb_dist[2],
}
iface = gr.Interface(rgb_distribution, "image", "label")
output = iface.process([x_img])[0][0]
self.assertDictEqual(
output,
{
"label": "red",
"confidences": [
{"label": "red", "confidence": 0.44},
{"label": "green", "confidence": 0.28},
{"label": "blue", "confidence": 0.28},
],
},
)
class TestHighlightedText(unittest.TestCase):
def test_component_functionalities(self):
"""
get_template_context, save_flagged, restore_flagged
"""
ht_output = gr.HighlightedText(color_map={"pos": "green", "neg": "red"})
self.assertEqual(
ht_output.get_template_context(),
{
"color_map": {"pos": "green", "neg": "red"},
"name": "highlightedtext",
"label": None,
"show_legend": False,
"css": {},
"default_value": "",
},
)
ht = {"pos": "Hello ", "neg": "World"}
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = ht_output.save_flagged(tmpdirname, "ht_output", ht, None)
self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}')
self.assertEqual(
ht_output.restore_flagged(tmpdirname, to_save, None),
{"pos": "Hello ", "neg": "World"},
)
def test_in_interface(self):
"""
Interface, process
"""
def highlight_vowels(sentence):
phrases, cur_phrase = [], ""
vowels, mode = "aeiou", None
for letter in sentence:
letter_mode = "vowel" if letter in vowels else "non"
if mode is None:
mode = letter_mode
elif mode != letter_mode:
phrases.append((cur_phrase, mode))
cur_phrase = ""
mode = letter_mode
cur_phrase += letter
phrases.append((cur_phrase, mode))
return phrases
iface = gr.Interface(highlight_vowels, "text", "highlight")
self.assertListEqual(
iface.process(["Helloooo"])[0][0],
[("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")],
)
class TestJSON(unittest.TestCase):
def test_component_functionalities(self):
"""
Postprocess, save_flagged, restore_flagged
"""
js_output = gr.JSON()
self.assertTrue(
js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"'
)
js = {"pos": "Hello ", "neg": "World"}
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = js_output.save_flagged(tmpdirname, "js_output", js, None)
self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}')
self.assertEqual(
js_output.restore_flagged(tmpdirname, to_save, None),
{"pos": "Hello ", "neg": "World"},
)
self.assertEqual(
js_output.get_template_context(),
{"css": {}, "default_value": '""', "label": None, "name": "json"},
)
def test_in_interface(self):
"""
Interface, process
"""
def get_avg_age_per_gender(data):
return {
"M": int(data[data["gender"] == "M"].mean()),
"F": int(data[data["gender"] == "F"].mean()),
"O": int(data[data["gender"] == "O"].mean()),
}
iface = gr.Interface(
get_avg_age_per_gender,
gr.inputs.Dataframe(headers=["gender", "age"]),
"json",
)
y_data = [
["M", 30],
["F", 20],
["M", 40],
["O", 20],
["F", 30],
]
self.assertDictEqual(iface.process([y_data])[0][0], {"M": 35, "F": 25, "O": 20})
class TestHTML(unittest.TestCase):
def test_component_functionalities(self):
"""
Get_template_context
"""
html_component = gr.components.HTML("#Welcome onboard", label="HTML Input")
self.assertEqual(
{
"css": {},
"default_value": "#Welcome onboard",
"label": "HTML Input",
"name": "html",
},
html_component.get_template_context(),
)
def test_in_interface(self):
"""
Interface, process
"""
def bold_text(text):
return "<strong>" + text + "</strong>"
iface = gr.Interface(bold_text, "text", "html")
self.assertEqual(iface.process(["test"])[0][0], "<strong>test</strong>")
class TestCarousel(unittest.TestCase):
def test_component_functionalities(self):
"""
Postprocess, get_template_context, save_flagged, restore_flagged
"""
carousel_output = gr.Carousel(
components=[gr.Textbox(), gr.Image()], label="Disease"
)
output = carousel_output.postprocess(
[
["Hello World", "test/test_files/bus.png"],
["Bye World", "test/test_files/bus.png"],
]
)
self.assertEqual(
output,
[
["Hello World", deepcopy(media_data.BASE64_IMAGE)],
["Bye World", deepcopy(media_data.BASE64_IMAGE)],
],
)
carousel_output = gr.Carousel(components=gr.Textbox(), label="Disease")
output = carousel_output.postprocess([["Hello World"], ["Bye World"]])
self.assertEqual(output, [["Hello World"], ["Bye World"]])
self.assertEqual(
carousel_output.get_template_context(),
{
"components": [
{
"name": "textbox",
"label": None,
"default_value": "",
"lines": 1,
"css": {},
"placeholder": None,
}
],
"name": "carousel",
"label": "Disease",
"css": {},
},
)
output = carousel_output.postprocess(["Hello World", "Bye World"])
self.assertEqual(output, [["Hello World"], ["Bye World"]])
with self.assertRaises(ValueError):
carousel_output.postprocess("Hello World!")
with tempfile.TemporaryDirectory() as tmpdirname:
to_save = carousel_output.save_flagged(
tmpdirname, "carousel_output", output, None
)
self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]')
restored = carousel_output.restore_flagged(tmpdirname, output, None)
self.assertEqual(None, restored)
def test_in_interface(self):
"""
Interface, process
"""
carousel_output = gr.Carousel(
components=[gr.Textbox(), gr.Image()], label="Disease"
)
def report(img):
results = []
for i, mode in enumerate(["Red", "Green", "Blue"]):
color_filter = np.array([0, 0, 0])
color_filter[i] = 1
results.append([mode, img * color_filter])
return results
iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output)
result = iface.process([deepcopy(media_data.BASE64_IMAGE)])
self.assertTrue(result[0][0][0][0] == "Red")
self.assertTrue(
result[0][0][0][1].startswith("")
)
self.assertTrue(result[0][0][1][0] == "Green")
self.assertTrue(
result[0][0][1][1].startswith("")
)
self.assertTrue(result[0][0][2][0] == "Blue")
self.assertTrue(
result[0][0][2][1].startswith("")
)
if __name__ == "__main__":
unittest.main()