gradio/demo/unispeech-speaker-verification/run.py
aliabid94 608d3b6250
Python backend to theming (#2931)
* add theme + theme atoms

* audio

* buttons

* chatbot

* forms

* start file

* complete file

* fixup workbench

* gallery

* highlighted text

* label

* json

* upload

* 3d model

* atoms

* chart

* md + html

* image

* plot + build

* table

* tabs

* tooltip

* upload

* tweaks

* tweaks + more tooling

* tweaks to padding/ lineheight

* app components _ start api docs

* format, more api docs

* finish api docs

* interpretation

* todos

* tweaks + cleanup

* tweaks + cleanup

* revert range tweaks

* fix notebooks

* fix test

* remove tw

* cleanup + login

* fix gitignore

* fix types

* run css script

* fix progress + tweaks

* update demos

* add css build to static check workflow

* tweak ci

* fix tests

* tweak markdown

* tweak chatbot + file

* fix tabs

* tweak tabs

* cleanup

* fix api docs

* fix example gallery

* add gradient to toast

* fix min height for interfaces

* revert tab changes

* update notebooks

* changes

* changes

* change

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* change

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* fix

* changes

* changes

* changes

* changes

* changes

* changes

* undo radius

* undo radius

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* changes

* change

* undo

* Add absolute imports

* mock theme in tests

* clean

* changes

* changes

---------

Co-authored-by: pngwn <hello@pngwn.io>
Co-authored-by: freddyaboulton <alfonsoboulton@gmail.com>
Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
2023-03-06 12:52:31 -08:00

120 lines
4.4 KiB
Python

import gradio as gr
import torch
from torchaudio.sox_effects import apply_effects_file
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
<div class="row"><h1 style="text-align: center">similar</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
</div>
"""
)
OUTPUT_FAIL = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
<div class="row"><h1 style="text-align: center">similar</h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
</div>
"""
)
EFFECTS = [
["remix", "-"],
["channels", "1"],
["rate", "16000"],
["gain", "-1.0"],
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
["trim", "0", "10"],
]
THRESHOLD = 0.85
model_name = "microsoft/unispeech-sat-base-plus-sv"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
def similarity_fn(path1, path2):
if not (path1 and path2):
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
wav1, _ = apply_effects_file(path1, EFFECTS)
wav2, _ = apply_effects_file(path2, EFFECTS)
print(wav1.shape, wav2.shape)
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
with torch.no_grad():
emb1 = model(input1).embeddings
emb2 = model(input2).embeddings
emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu()
emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu()
similarity = cosine_sim(emb1, emb2).numpy()[0]
if similarity >= THRESHOLD:
output = OUTPUT_OK.format(similarity * 100)
else:
output = OUTPUT_FAIL.format(similarity * 100)
return output
inputs = [
gr.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
gr.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
output = gr.HTML(label="")
description = (
"This demo will compare two speech samples and determine if they are from the same speaker. "
"Try it with your own voice!"
)
article = (
"<p style='text-align: center'>"
"<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>🎙️ Learn more about UniSpeech-SAT</a> | "
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>📚 UniSpeech-SAT paper</a> | "
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>📚 X-Vector paper</a>"
"</p>"
)
examples = [
["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"],
["samples/cate_blanch.mp3", "samples/cate_blanch_3.mp3"],
["samples/cate_blanch_2.mp3", "samples/cate_blanch_3.mp3"],
["samples/heath_ledger.mp3", "samples/heath_ledger_2.mp3"],
["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"],
]
demo = gr.Interface(
fn=similarity_fn,
inputs=inputs,
outputs=output,
title="Voice Authentication with UniSpeech-SAT + X-Vectors",
description=description,
article=article,
layout="horizontal",
allow_flagging="never",
live=False,
examples=examples,
)
if __name__ == "__main__":
demo.launch()