mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
import gradio as gr
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
def stock_forecast(final_year, companies, noise, show_legend, point_style):
|
|
start_year = 2020
|
|
x = np.arange(start_year, final_year + 1)
|
|
year_count = x.shape[0]
|
|
plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
for i, company in enumerate(companies):
|
|
series = np.arange(0, year_count, dtype=float)
|
|
series = series ** 2 * (i + 1)
|
|
series += np.random.rand(year_count) * noise
|
|
ax.plot(x, series, plt_format)
|
|
if show_legend:
|
|
plt.legend(companies)
|
|
plt.close()
|
|
return fig
|
|
|
|
|
|
iface = gr.Interface(
|
|
stock_forecast,
|
|
[
|
|
gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
|
gr.inputs.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
|
|
gr.inputs.Slider(1, 100),
|
|
"checkbox",
|
|
gr.inputs.Dropdown(["cross", "line", "circle"], label="Style")],
|
|
gr.outputs.Image(plot=True, label="forecast"))
|
|
|
|
iface.test_launch()
|
|
if __name__ == "__main__":
|
|
iface.launch()
|