mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-18 10:44:33 +08:00
597337dcb8
* added playground with 12 demos * change name to recipes, restyle navbar * add explanatory text to page * fix demo mapping * categorize demos, clean up design * styling * cateogry naming and emojis * refactor and add text demos * add view code button * remove opening slash in embed * styling * add image demos * adding plot demos * remove see code button * removed submodules * changes * add audio models * remove fun section * remove tests in image semgentation demo repo * requested changes * add outbreak_forecast * fix broken demos * remove images and models, add new demos * remove readmes, change to run.py, add description as comment * move to /demos folder, clean up dict * add upload_to_spaces script * fix script, clean repos, and add to docker file * fix python versioning issue * env variable * fix * env fixes * spaces instead of tabs * revert to original networking.py * fix rate limiting in asr and autocomplete * change name to demos * clean up navbar * move url and description, remove code comments * add tabs to demos * remove margins and footer from embedded demo * font consistency Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
41 lines
1.5 KiB
Python
41 lines
1.5 KiB
Python
import gradio as gr
|
|
import pypistats
|
|
from datetime import date
|
|
from dateutil.relativedelta import relativedelta
|
|
import pandas as pd
|
|
from prophet import Prophet
|
|
pd.options.plotting.backend = "plotly"
|
|
|
|
def get_forecast(lib, time):
|
|
|
|
data = pypistats.overall(lib, total=True, format="pandas")
|
|
data = data.groupby("category").get_group("with_mirrors").sort_values("date")
|
|
start_date = date.today() - relativedelta(months=int(time.split(" ")[0]))
|
|
df = data[(data['date'] > str(start_date))]
|
|
|
|
df1 = df[['date','downloads']]
|
|
df1.columns = ['ds','y']
|
|
|
|
m = Prophet()
|
|
m.fit(df1)
|
|
future = m.make_future_dataframe(periods=90)
|
|
forecast = m.predict(future)
|
|
fig1 = m.plot(forecast)
|
|
return fig1
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown(
|
|
"""
|
|
**Pypi Download Stats 📈 with Prophet Forecasting**: see live download stats for popular open-source libraries 🤗 along with a 3 month forecast using Prophet. The [ source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/timeseries-forecasting-with-prophet/blob/main/app.py).
|
|
""")
|
|
with gr.Row():
|
|
lib = gr.Dropdown(["pandas", "scikit-learn", "torch", "prophet"], label="Library", value="pandas")
|
|
time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], label="Downloads over the last...", value="12 months")
|
|
|
|
plt = gr.Plot()
|
|
|
|
lib.change(get_forecast, [lib, time], plt, queue=False)
|
|
time.change(get_forecast, [lib, time], plt, queue=False)
|
|
demo.load(get_forecast, [lib, time], plt, queue=False)
|
|
|
|
demo.launch() |