mirror of
https://github.com/gradio-app/gradio.git
synced 2025-03-07 11:46:51 +08:00
* added playground with 12 demos * change name to recipes, restyle navbar * add explanatory text to page * fix demo mapping * categorize demos, clean up design * styling * cateogry naming and emojis * refactor and add text demos * add view code button * remove opening slash in embed * styling * add image demos * adding plot demos * remove see code button * removed submodules * changes * add audio models * remove fun section * remove tests in image semgentation demo repo * requested changes * add outbreak_forecast * fix broken demos * remove images and models, add new demos * remove readmes, change to run.py, add description as comment * move to /demos folder, clean up dict * add upload_to_spaces script * fix script, clean repos, and add to docker file * fix python versioning issue * env variable * fix * env fixes * spaces instead of tabs * revert to original networking.py * fix rate limiting in asr and autocomplete * change name to demos * clean up navbar * move url and description, remove code comments * add tabs to demos * remove margins and footer from embedded demo * font consistency Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
107 lines
3.9 KiB
Python
107 lines
3.9 KiB
Python
import gradio as gr
|
|
import torch
|
|
from torchaudio.sox_effects import apply_effects_file
|
|
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
OUTPUT_OK = (
|
|
"""
|
|
<div class="container">
|
|
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
|
|
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
|
|
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
|
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
|
|
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
|
</div>
|
|
"""
|
|
)
|
|
OUTPUT_FAIL = (
|
|
"""
|
|
<div class="container">
|
|
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
|
|
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
|
|
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
|
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
|
|
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
|
</div>
|
|
"""
|
|
)
|
|
|
|
EFFECTS = [
|
|
["remix", "-"],
|
|
["channels", "1"],
|
|
["rate", "16000"],
|
|
["gain", "-1.0"],
|
|
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
|
|
["trim", "0", "10"],
|
|
]
|
|
|
|
THRESHOLD = 0.85
|
|
|
|
model_name = "microsoft/unispeech-sat-base-plus-sv"
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
|
|
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
|
|
|
|
|
def similarity_fn(path1, path2):
|
|
if not (path1 and path2):
|
|
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
|
|
|
|
wav1, _ = apply_effects_file(path1, EFFECTS)
|
|
wav2, _ = apply_effects_file(path2, EFFECTS)
|
|
print(wav1.shape, wav2.shape)
|
|
|
|
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
|
input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
|
|
|
with torch.no_grad():
|
|
emb1 = model(input1).embeddings
|
|
emb2 = model(input2).embeddings
|
|
emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu()
|
|
emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu()
|
|
similarity = cosine_sim(emb1, emb2).numpy()[0]
|
|
|
|
if similarity >= THRESHOLD:
|
|
output = OUTPUT_OK.format(similarity * 100)
|
|
else:
|
|
output = OUTPUT_FAIL.format(similarity * 100)
|
|
|
|
return output
|
|
|
|
inputs = [
|
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
|
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
|
|
]
|
|
output = gr.outputs.HTML(label="")
|
|
|
|
|
|
description = (
|
|
"This demo from Microsoft will compare two speech samples and determine if they are from the same speaker. "
|
|
"Try it with your own voice!"
|
|
)
|
|
article = (
|
|
"<p style='text-align: center'>"
|
|
"<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>🎙️ Learn more about UniSpeech-SAT</a> | "
|
|
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>📚 UniSpeech-SAT paper</a> | "
|
|
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>📚 X-Vector paper</a>"
|
|
"</p>"
|
|
)
|
|
examples = [
|
|
["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"],
|
|
["samples/cate_blanch.mp3", "samples/heath_ledger.mp3"],
|
|
]
|
|
|
|
interface = gr.Interface(
|
|
fn=similarity_fn,
|
|
inputs=inputs,
|
|
outputs=output,
|
|
layout="horizontal",
|
|
theme="huggingface",
|
|
allow_flagging=False,
|
|
live=False,
|
|
examples=examples,
|
|
cache_examples=False
|
|
)
|
|
interface.launch()
|