mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
735 lines
30 KiB
Python
735 lines
30 KiB
Python
import copy
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from difflib import SequenceMatcher
|
|
from test.test_data import media_data
|
|
|
|
import numpy as np
|
|
import pandas
|
|
import PIL
|
|
|
|
import gradio as gr
|
|
|
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
|
|
|
# TODO: Delete this file after confirming backwards compatibility works well.
|
|
|
|
|
|
class TestTextbox(unittest.TestCase):
|
|
def test_as_component(self):
|
|
text_input = gr.inputs.Textbox()
|
|
self.assertEqual(text_input.preprocess("Hello World!"), "Hello World!")
|
|
self.assertEqual(text_input.preprocess_example("Hello World!"), "Hello World!")
|
|
self.assertEqual(text_input.serialize("Hello World!", True), "Hello World!")
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = text_input.save_flagged(
|
|
tmpdirname, "text_input", "Hello World!", None
|
|
)
|
|
self.assertEqual(to_save, "Hello World!")
|
|
restored = text_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "Hello World!")
|
|
|
|
with self.assertWarns(DeprecationWarning):
|
|
_ = gr.inputs.Textbox(type="number")
|
|
|
|
self.assertEqual(
|
|
text_input.tokenize("Hello World! Gradio speaking."),
|
|
(
|
|
["Hello", "World!", "Gradio", "speaking."],
|
|
[
|
|
"World! Gradio speaking.",
|
|
"Hello Gradio speaking.",
|
|
"Hello World! speaking.",
|
|
"Hello World! Gradio",
|
|
],
|
|
None,
|
|
),
|
|
)
|
|
text_input.interpretation_replacement = "unknown"
|
|
self.assertEqual(
|
|
text_input.tokenize("Hello World! Gradio speaking."),
|
|
(
|
|
["Hello", "World!", "Gradio", "speaking."],
|
|
[
|
|
"unknown World! Gradio speaking.",
|
|
"Hello unknown Gradio speaking.",
|
|
"Hello World! unknown speaking.",
|
|
"Hello World! Gradio unknown",
|
|
],
|
|
None,
|
|
),
|
|
)
|
|
|
|
self.assertIsInstance(text_input.generate_sample(), str)
|
|
|
|
def test_in_interface(self):
|
|
iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox")
|
|
self.assertEqual(iface.process(["Hello"])[0], ["olleH"])
|
|
iface = gr.Interface(
|
|
lambda sentence: max([len(word) for word in sentence.split()]),
|
|
gr.inputs.Textbox(),
|
|
"number",
|
|
interpretation="default",
|
|
)
|
|
scores = iface.interpret(
|
|
["Return the length of the longest word in this sentence"]
|
|
)[0]["interpretation"]
|
|
self.assertEqual(
|
|
scores,
|
|
[
|
|
("Return", 0.0),
|
|
(" ", 0),
|
|
("the", 0.0),
|
|
(" ", 0),
|
|
("length", 0.0),
|
|
(" ", 0),
|
|
("of", 0.0),
|
|
(" ", 0),
|
|
("the", 0.0),
|
|
(" ", 0),
|
|
("longest", 0.0),
|
|
(" ", 0),
|
|
("word", 0.0),
|
|
(" ", 0),
|
|
("in", 0.0),
|
|
(" ", 0),
|
|
("this", 0.0),
|
|
(" ", 0),
|
|
("sentence", 1.0),
|
|
(" ", 0),
|
|
],
|
|
)
|
|
|
|
|
|
class TestNumber(unittest.TestCase):
|
|
def test_as_component(self):
|
|
numeric_input = gr.inputs.Number(optional=True)
|
|
self.assertEqual(numeric_input.preprocess(3), 3.0)
|
|
self.assertEqual(numeric_input.preprocess(None), None)
|
|
self.assertEqual(numeric_input.preprocess_example(3), 3)
|
|
self.assertEqual(numeric_input.serialize(3, True), 3)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = numeric_input.save_flagged(tmpdirname, "numeric_input", 3, None)
|
|
self.assertEqual(to_save, 3)
|
|
restored = numeric_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, 3)
|
|
self.assertIsInstance(numeric_input.generate_sample(), float)
|
|
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute")
|
|
self.assertEqual(
|
|
numeric_input.get_interpretation_neighbors(1),
|
|
([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}),
|
|
)
|
|
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent")
|
|
self.assertEqual(
|
|
numeric_input.get_interpretation_neighbors(1),
|
|
([0.97, 0.98, 0.99, 1.01, 1.02, 1.03], {}),
|
|
)
|
|
self.assertEqual(
|
|
numeric_input.get_template_context(),
|
|
{"default_value": None, "name": "number", "label": None, "css": {}},
|
|
)
|
|
|
|
def test_in_interface(self):
|
|
iface = gr.Interface(lambda x: x**2, "number", "textbox")
|
|
self.assertEqual(iface.process([2])[0], ["4.0"])
|
|
iface = gr.Interface(
|
|
lambda x: x**2, "number", "number", interpretation="default"
|
|
)
|
|
scores = iface.interpret([2])[0]["interpretation"]
|
|
self.assertEqual(
|
|
scores,
|
|
[
|
|
(1.94, -0.23640000000000017),
|
|
(1.96, -0.15840000000000032),
|
|
(1.98, -0.07960000000000012),
|
|
[2, None],
|
|
(2.02, 0.08040000000000003),
|
|
(2.04, 0.16159999999999997),
|
|
(2.06, 0.24359999999999982),
|
|
],
|
|
)
|
|
|
|
|
|
class TestSlider(unittest.TestCase):
|
|
def test_as_component(self):
|
|
slider_input = gr.inputs.Slider()
|
|
self.assertEqual(slider_input.preprocess(3.0), 3.0)
|
|
self.assertEqual(slider_input.preprocess_example(3), 3)
|
|
self.assertEqual(slider_input.serialize(3, True), 3)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = slider_input.save_flagged(tmpdirname, "slider_input", 3, None)
|
|
self.assertEqual(to_save, 3)
|
|
restored = slider_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, 3)
|
|
|
|
self.assertIsInstance(slider_input.generate_sample(), int)
|
|
slider_input = gr.inputs.Slider(
|
|
default=15, minimum=10, maximum=20, step=1, label="Slide Your Input"
|
|
)
|
|
self.assertEqual(
|
|
slider_input.get_template_context(),
|
|
{
|
|
"minimum": 10,
|
|
"maximum": 20,
|
|
"step": 1,
|
|
"default_value": 15,
|
|
"name": "slider",
|
|
"label": "Slide Your Input",
|
|
"css": {},
|
|
},
|
|
)
|
|
|
|
def test_in_interface(self):
|
|
iface = gr.Interface(lambda x: x**2, "slider", "textbox")
|
|
self.assertEqual(iface.process([2])[0], ["4"])
|
|
iface = gr.Interface(
|
|
lambda x: x**2, "slider", "number", interpretation="default"
|
|
)
|
|
scores = iface.interpret([2])[0]["interpretation"]
|
|
self.assertEqual(
|
|
scores,
|
|
[
|
|
-4.0,
|
|
200.08163265306123,
|
|
812.3265306122449,
|
|
1832.7346938775513,
|
|
3261.3061224489797,
|
|
5098.040816326531,
|
|
7342.938775510205,
|
|
9996.0,
|
|
],
|
|
)
|
|
|
|
|
|
class TestCheckbox(unittest.TestCase):
|
|
def test_as_component(self):
|
|
bool_input = gr.inputs.Checkbox()
|
|
self.assertEqual(bool_input.preprocess(True), True)
|
|
self.assertEqual(bool_input.preprocess_example(True), True)
|
|
self.assertEqual(bool_input.serialize(True, True), True)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = bool_input.save_flagged(tmpdirname, "bool_input", True, None)
|
|
self.assertEqual(to_save, True)
|
|
restored = bool_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, True)
|
|
self.assertIsInstance(bool_input.generate_sample(), bool)
|
|
bool_input = gr.inputs.Checkbox(default=True, label="Check Your Input")
|
|
self.assertEqual(
|
|
bool_input.get_template_context(),
|
|
{
|
|
"default_value": True,
|
|
"name": "checkbox",
|
|
"label": "Check Your Input",
|
|
"css": {},
|
|
},
|
|
)
|
|
|
|
def test_in_interface(self):
|
|
iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "number")
|
|
self.assertEqual(iface.process([True])[0], [1])
|
|
iface = gr.Interface(
|
|
lambda x: 1 if x else 0, "checkbox", "number", interpretation="default"
|
|
)
|
|
scores = iface.interpret([False])[0]["interpretation"]
|
|
self.assertEqual(scores, (None, 1.0))
|
|
scores = iface.interpret([True])[0]["interpretation"]
|
|
self.assertEqual(scores, (-1.0, None))
|
|
|
|
|
|
class TestCheckboxGroup(unittest.TestCase):
|
|
def test_as_component(self):
|
|
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"])
|
|
self.assertEqual(checkboxes_input.preprocess(["a", "c"]), ["a", "c"])
|
|
self.assertEqual(checkboxes_input.preprocess_example(["a", "c"]), ["a", "c"])
|
|
self.assertEqual(checkboxes_input.serialize(["a", "c"], True), ["a", "c"])
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = checkboxes_input.save_flagged(
|
|
tmpdirname, "checkboxes_input", ["a", "c"], None
|
|
)
|
|
self.assertEqual(to_save, '["a", "c"]')
|
|
restored = checkboxes_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, ["a", "c"])
|
|
self.assertIsInstance(checkboxes_input.generate_sample(), list)
|
|
checkboxes_input = gr.inputs.CheckboxGroup(
|
|
default=["a", "c"], choices=["a", "b", "c"], label="Check Your Inputs"
|
|
)
|
|
self.assertEqual(
|
|
checkboxes_input.get_template_context(),
|
|
{
|
|
"choices": ["a", "b", "c"],
|
|
"default_value": ["a", "c"],
|
|
"name": "checkboxgroup",
|
|
"label": "Check Your Inputs",
|
|
"css": {},
|
|
},
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.CheckboxGroup(["a"], type="unknown")
|
|
wrong_type.preprocess(0)
|
|
|
|
def test_in_interface(self):
|
|
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"])
|
|
iface = gr.Interface(lambda x: "|".join(x), checkboxes_input, "textbox")
|
|
self.assertEqual(iface.process([["a", "c"]])[0], ["a|c"])
|
|
self.assertEqual(iface.process([[]])[0], [""])
|
|
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"], type="index")
|
|
|
|
|
|
class TestRadio(unittest.TestCase):
|
|
def test_as_component(self):
|
|
radio_input = gr.inputs.Radio(["a", "b", "c"])
|
|
self.assertEqual(radio_input.preprocess("c"), "c")
|
|
self.assertEqual(radio_input.preprocess_example("a"), "a")
|
|
self.assertEqual(radio_input.serialize("a", True), "a")
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = radio_input.save_flagged(tmpdirname, "radio_input", "a", None)
|
|
self.assertEqual(to_save, "a")
|
|
restored = radio_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "a")
|
|
self.assertIsInstance(radio_input.generate_sample(), str)
|
|
radio_input = gr.inputs.Radio(
|
|
choices=["a", "b", "c"], default="a", label="Pick Your One Input"
|
|
)
|
|
self.assertEqual(
|
|
radio_input.get_template_context(),
|
|
{
|
|
"choices": ["a", "b", "c"],
|
|
"default_value": "a",
|
|
"name": "radio",
|
|
"label": "Pick Your One Input",
|
|
"css": {},
|
|
},
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.Radio(["a", "b"], type="unknown")
|
|
wrong_type.preprocess(0)
|
|
|
|
def test_in_interface(self):
|
|
radio_input = gr.inputs.Radio(["a", "b", "c"])
|
|
iface = gr.Interface(lambda x: 2 * x, radio_input, "textbox")
|
|
self.assertEqual(iface.process(["c"])[0], ["cc"])
|
|
radio_input = gr.inputs.Radio(["a", "b", "c"], type="index")
|
|
iface = gr.Interface(
|
|
lambda x: 2 * x, radio_input, "number", interpretation="default"
|
|
)
|
|
self.assertEqual(iface.process(["c"])[0], [4])
|
|
scores = iface.interpret(["b"])[0]["interpretation"]
|
|
self.assertEqual(scores, [-2.0, None, 2.0])
|
|
|
|
|
|
class TestDropdown(unittest.TestCase):
|
|
def test_as_component(self):
|
|
dropdown_input = gr.inputs.Dropdown(["a", "b", "c"])
|
|
self.assertEqual(dropdown_input.preprocess("c"), "c")
|
|
self.assertEqual(dropdown_input.preprocess_example("a"), "a")
|
|
self.assertEqual(dropdown_input.serialize("a", True), "a")
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = dropdown_input.save_flagged(
|
|
tmpdirname, "dropdown_input", "a", None
|
|
)
|
|
self.assertEqual(to_save, "a")
|
|
restored = dropdown_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "a")
|
|
self.assertIsInstance(dropdown_input.generate_sample(), str)
|
|
dropdown_input = gr.inputs.Dropdown(
|
|
choices=["a", "b", "c"], default="a", label="Drop Your Input"
|
|
)
|
|
self.assertEqual(
|
|
dropdown_input.get_template_context(),
|
|
{
|
|
"choices": ["a", "b", "c"],
|
|
"default_value": "a",
|
|
"name": "dropdown",
|
|
"label": "Drop Your Input",
|
|
"css": {},
|
|
},
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.Dropdown(["a"], type="unknown")
|
|
wrong_type.preprocess(0)
|
|
|
|
def test_in_interface(self):
|
|
dropdown_input = gr.inputs.Dropdown(["a", "b", "c"])
|
|
iface = gr.Interface(lambda x: 2 * x, dropdown_input, "textbox")
|
|
self.assertEqual(iface.process(["c"])[0], ["cc"])
|
|
dropdown = gr.inputs.Dropdown(["a", "b", "c"], type="index")
|
|
iface = gr.Interface(
|
|
lambda x: 2 * x, dropdown, "number", interpretation="default"
|
|
)
|
|
self.assertEqual(iface.process(["c"])[0], [4])
|
|
scores = iface.interpret(["b"])[0]["interpretation"]
|
|
self.assertEqual(scores, [-2.0, None, 2.0])
|
|
|
|
|
|
class TestImage(unittest.TestCase):
|
|
def test_as_component(self):
|
|
img = media_data.BASE64_IMAGE
|
|
image_input = gr.inputs.Image()
|
|
self.assertEqual(image_input.preprocess(img).shape, (68, 61, 3))
|
|
image_input = gr.inputs.Image(shape=(25, 25), image_mode="L")
|
|
self.assertEqual(image_input.preprocess(img).shape, (25, 25))
|
|
image_input = gr.inputs.Image(shape=(30, 10), type="pil")
|
|
self.assertEqual(image_input.preprocess(img).size, (30, 10))
|
|
self.assertEqual(image_input.preprocess_example("test/test_files/bus.png"), img)
|
|
self.assertEqual(image_input.serialize("test/test_files/bus.png", True), img)
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = image_input.save_flagged(tmpdirname, "image_input", img, None)
|
|
self.assertEqual("image_input/0.png", to_save)
|
|
to_save = image_input.save_flagged(tmpdirname, "image_input", img, None)
|
|
self.assertEqual("image_input/1.png", to_save)
|
|
restored = image_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "image_input/1.png")
|
|
|
|
self.assertIsInstance(image_input.generate_sample(), str)
|
|
image_input = gr.inputs.Image(
|
|
source="upload", tool="editor", type="pil", label="Upload Your Image"
|
|
)
|
|
self.assertEqual(
|
|
image_input.get_template_context(),
|
|
{
|
|
"image_mode": "RGB",
|
|
"shape": None,
|
|
"source": "upload",
|
|
"tool": "editor",
|
|
"name": "image",
|
|
"label": "Upload Your Image",
|
|
"css": {},
|
|
"default_value": None,
|
|
},
|
|
)
|
|
self.assertIsNone(image_input.preprocess(None))
|
|
image_input = gr.inputs.Image(invert_colors=True)
|
|
self.assertIsNotNone(image_input.preprocess(img))
|
|
image_input.preprocess(img)
|
|
with self.assertWarns(DeprecationWarning):
|
|
file_image = gr.inputs.Image(type="file")
|
|
file_image.preprocess(media_data.BASE64_IMAGE)
|
|
file_image = gr.inputs.Image(type="filepath")
|
|
self.assertIsInstance(file_image.preprocess(img), str)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.Image(type="unknown")
|
|
wrong_type.preprocess(img)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.Image(type="unknown")
|
|
wrong_type.serialize("test/test_files/bus.png", False)
|
|
img_pil = PIL.Image.open("test/test_files/bus.png")
|
|
image_input = gr.inputs.Image(type="numpy")
|
|
self.assertIsInstance(image_input.serialize(img_pil, False), str)
|
|
image_input = gr.inputs.Image(type="pil")
|
|
self.assertIsInstance(image_input.serialize(img_pil, False), str)
|
|
image_input = gr.inputs.Image(type="file")
|
|
with open("test/test_files/bus.png") as f:
|
|
self.assertEqual(image_input.serialize(f, False), img)
|
|
image_input.shape = (30, 10)
|
|
self.assertIsNotNone(image_input._segment_by_slic(img))
|
|
|
|
def test_in_interface(self):
|
|
img = media_data.BASE64_IMAGE
|
|
image_input = gr.inputs.Image()
|
|
iface = gr.Interface(
|
|
lambda x: PIL.Image.open(x).rotate(90, expand=True),
|
|
gr.inputs.Image(shape=(30, 10), type="file"),
|
|
"image",
|
|
)
|
|
output = iface.process([img])[0][0]
|
|
self.assertEqual(
|
|
gr.processing_utils.decode_base64_to_image(output).size, (10, 30)
|
|
)
|
|
iface = gr.Interface(
|
|
lambda x: np.sum(x), image_input, "number", interpretation="default"
|
|
)
|
|
scores = iface.interpret([img])[0]["interpretation"]
|
|
self.assertEqual(scores, media_data.SUM_PIXELS_INTERPRETATION["scores"][0])
|
|
iface = gr.Interface(
|
|
lambda x: np.sum(x), image_input, "label", interpretation="shap"
|
|
)
|
|
scores = iface.interpret([img])[0]["interpretation"]
|
|
self.assertEqual(
|
|
len(scores[0]),
|
|
len(media_data.SUM_PIXELS_SHAP_INTERPRETATION["scores"][0][0]),
|
|
)
|
|
image_input = gr.inputs.Image(shape=(30, 10))
|
|
iface = gr.Interface(
|
|
lambda x: np.sum(x), image_input, "number", interpretation="default"
|
|
)
|
|
self.assertIsNotNone(iface.interpret([img]))
|
|
|
|
|
|
class TestAudio(unittest.TestCase):
|
|
def test_as_component(self):
|
|
x_wav = copy.deepcopy(media_data.BASE64_AUDIO)
|
|
audio_input = gr.inputs.Audio()
|
|
output = audio_input.preprocess(x_wav)
|
|
self.assertEqual(output[0], 8000)
|
|
self.assertEqual(output[1].shape, (8046,))
|
|
self.assertEqual(
|
|
audio_input.serialize("test/test_files/audio_sample.wav", True)["data"],
|
|
x_wav["data"],
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None)
|
|
self.assertEqual("audio_input/0.wav", to_save)
|
|
to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None)
|
|
self.assertEqual("audio_input/1.wav", to_save)
|
|
restored = audio_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "audio_input/1.wav")
|
|
|
|
self.assertIsInstance(audio_input.generate_sample(), dict)
|
|
audio_input = gr.inputs.Audio(label="Upload Your Audio")
|
|
self.assertEqual(
|
|
audio_input.get_template_context(),
|
|
{
|
|
"source": "upload",
|
|
"name": "audio",
|
|
"label": "Upload Your Audio",
|
|
"css": {},
|
|
"default_value": None,
|
|
},
|
|
)
|
|
self.assertIsNone(audio_input.preprocess(None))
|
|
x_wav["is_example"] = True
|
|
x_wav["crop_min"], x_wav["crop_max"] = 1, 4
|
|
self.assertIsNotNone(audio_input.preprocess(x_wav))
|
|
with self.assertWarns(DeprecationWarning):
|
|
audio_input = gr.inputs.Audio(type="file")
|
|
audio_input.preprocess(x_wav)
|
|
with open("test/test_files/audio_sample.wav") as f:
|
|
audio_input.serialize(f, False)
|
|
audio_input = gr.inputs.Audio(type="filepath")
|
|
self.assertIsInstance(audio_input.preprocess(x_wav), str)
|
|
with self.assertRaises(ValueError):
|
|
audio_input = gr.inputs.Audio(type="unknown")
|
|
audio_input.preprocess(x_wav)
|
|
audio_input.serialize(x_wav, False)
|
|
audio_input = gr.inputs.Audio(type="numpy")
|
|
x_wav = gr.processing_utils.audio_from_file("test/test_files/audio_sample.wav")
|
|
self.assertIsInstance(audio_input.serialize(x_wav, False), dict)
|
|
|
|
def test_tokenize(self):
|
|
x_wav = media_data.BASE64_AUDIO
|
|
audio_input = gr.inputs.Audio()
|
|
tokens, _, _ = audio_input.tokenize(x_wav)
|
|
self.assertEquals(len(tokens), audio_input.interpretation_segments)
|
|
x_new = audio_input.get_masked_inputs(tokens, [[1] * len(tokens)])[0]
|
|
similarity = SequenceMatcher(a=x_wav["data"], b=x_new).ratio()
|
|
self.assertGreater(similarity, 0.9)
|
|
|
|
|
|
class TestFile(unittest.TestCase):
|
|
def test_as_component(self):
|
|
x_file = media_data.BASE64_FILE
|
|
file_input = gr.inputs.File()
|
|
output = file_input.preprocess(x_file)
|
|
self.assertIsInstance(output, tempfile._TemporaryFileWrapper)
|
|
self.assertEqual(
|
|
file_input.serialize("test/test_files/sample_file.pdf", True),
|
|
"test/test_files/sample_file.pdf",
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None)
|
|
self.assertEqual("file_input/0", to_save)
|
|
to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None)
|
|
self.assertEqual("file_input/1", to_save)
|
|
restored = file_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "file_input/1")
|
|
|
|
self.assertIsInstance(file_input.generate_sample(), dict)
|
|
file_input = gr.inputs.File(label="Upload Your File")
|
|
self.assertEqual(
|
|
file_input.get_template_context(),
|
|
{
|
|
"file_count": "single",
|
|
"name": "file",
|
|
"label": "Upload Your File",
|
|
"css": {},
|
|
"default_value": None,
|
|
},
|
|
)
|
|
self.assertIsNone(file_input.preprocess(None))
|
|
x_file["is_example"] = True
|
|
self.assertIsNotNone(file_input.preprocess(x_file))
|
|
|
|
def test_in_interface(self):
|
|
x_file = media_data.BASE64_FILE
|
|
|
|
def get_size_of_file(file_obj):
|
|
return os.path.getsize(file_obj.name)
|
|
|
|
iface = gr.Interface(get_size_of_file, "file", "number")
|
|
self.assertEqual(iface.process([[x_file]])[0], [10558])
|
|
|
|
|
|
class TestDataframe(unittest.TestCase):
|
|
def test_as_component(self):
|
|
x_data = [["Tim", 12, False], ["Jan", 24, True]]
|
|
dataframe_input = gr.inputs.Dataframe(headers=["Name", "Age", "Member"])
|
|
output = dataframe_input.preprocess(x_data)
|
|
self.assertEqual(output["Age"][1], 24)
|
|
self.assertEqual(output["Member"][0], False)
|
|
self.assertEqual(dataframe_input.preprocess_example(x_data), x_data)
|
|
self.assertEqual(dataframe_input.serialize(x_data, True), x_data)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = dataframe_input.save_flagged(
|
|
tmpdirname, "dataframe_input", x_data, None
|
|
)
|
|
self.assertEqual(json.dumps(x_data), to_save)
|
|
restored = dataframe_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(x_data, restored)
|
|
|
|
self.assertIsInstance(dataframe_input.generate_sample(), list)
|
|
dataframe_input = gr.inputs.Dataframe(
|
|
headers=["Name", "Age", "Member"], label="Dataframe Input"
|
|
)
|
|
self.assertEqual(
|
|
dataframe_input.get_template_context(),
|
|
{
|
|
"headers": ["Name", "Age", "Member"],
|
|
"datatype": "str",
|
|
"row_count": 3,
|
|
"col_count": 3,
|
|
"col_width": None,
|
|
"default_value": [
|
|
[None, None, None],
|
|
[None, None, None],
|
|
[None, None, None],
|
|
],
|
|
"name": "dataframe",
|
|
"label": "Dataframe Input",
|
|
"max_rows": 20,
|
|
"max_cols": None,
|
|
"overflow_row_behaviour": "paginate",
|
|
"css": {},
|
|
},
|
|
)
|
|
dataframe_input = gr.inputs.Dataframe()
|
|
output = dataframe_input.preprocess(x_data)
|
|
self.assertEqual(output[1][1], 24)
|
|
with self.assertRaises(ValueError):
|
|
wrong_type = gr.inputs.Dataframe(type="unknown")
|
|
wrong_type.preprocess(x_data)
|
|
|
|
def test_in_interface(self):
|
|
x_data = [[1, 2, 3], [4, 5, 6]]
|
|
iface = gr.Interface(np.max, "numpy", "number")
|
|
self.assertEqual(iface.process([x_data])[0], [6])
|
|
x_data = [["Tim"], ["Jon"], ["Sal"]]
|
|
|
|
def get_last(my_list):
|
|
return my_list[-1]
|
|
|
|
iface = gr.Interface(get_last, "list", "text")
|
|
self.assertEqual(iface.process([x_data])[0], ["Sal"])
|
|
|
|
|
|
class TestVideo(unittest.TestCase):
|
|
def test_as_component(self):
|
|
x_video = media_data.BASE64_VIDEO
|
|
video_input = gr.inputs.Video()
|
|
output = video_input.preprocess(x_video)
|
|
self.assertIsInstance(output, str)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None)
|
|
self.assertEqual("video_input/0.mp4", to_save)
|
|
to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None)
|
|
self.assertEqual("video_input/1.mp4", to_save)
|
|
restored = video_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(restored, "video_input/1.mp4")
|
|
|
|
self.assertIsInstance(video_input.generate_sample(), dict)
|
|
video_input = gr.inputs.Video(label="Upload Your Video")
|
|
self.assertEqual(
|
|
video_input.get_template_context(),
|
|
{
|
|
"source": "upload",
|
|
"name": "video",
|
|
"label": "Upload Your Video",
|
|
"css": {},
|
|
"default_value": None,
|
|
},
|
|
)
|
|
self.assertIsNone(video_input.preprocess(None))
|
|
x_video["is_example"] = True
|
|
self.assertIsNotNone(video_input.preprocess(x_video))
|
|
video_input = gr.inputs.Video(type="avi")
|
|
# self.assertEqual(video_input.preprocess(x_video)[-3:], "avi")
|
|
with self.assertRaises(NotImplementedError):
|
|
video_input.serialize(x_video, True)
|
|
|
|
def test_in_interface(self):
|
|
x_video = media_data.BASE64_VIDEO
|
|
iface = gr.Interface(lambda x: x, "video", "playable_video")
|
|
self.assertEqual(iface.process([x_video])[0][0]["data"], x_video["data"])
|
|
|
|
|
|
class TestTimeseries(unittest.TestCase):
|
|
def test_as_component(self):
|
|
timeseries_input = gr.inputs.Timeseries(x="time", y=["retail", "food", "other"])
|
|
x_timeseries = {
|
|
"data": [[1] + [2] * len(timeseries_input.y)] * 4,
|
|
"headers": [timeseries_input.x] + timeseries_input.y,
|
|
}
|
|
output = timeseries_input.preprocess(x_timeseries)
|
|
self.assertIsInstance(output, pandas.core.frame.DataFrame)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
to_save = timeseries_input.save_flagged(
|
|
tmpdirname, "video_input", x_timeseries, None
|
|
)
|
|
self.assertEqual(json.dumps(x_timeseries), to_save)
|
|
restored = timeseries_input.restore_flagged(tmpdirname, to_save, None)
|
|
self.assertEqual(x_timeseries, restored)
|
|
|
|
self.assertIsInstance(timeseries_input.generate_sample(), dict)
|
|
timeseries_input = gr.inputs.Timeseries(
|
|
x="time", y="retail", label="Upload Your Timeseries"
|
|
)
|
|
self.assertEqual(
|
|
timeseries_input.get_template_context(),
|
|
{
|
|
"x": "time",
|
|
"y": ["retail"],
|
|
"name": "timeseries",
|
|
"label": "Upload Your Timeseries",
|
|
"css": {},
|
|
"default_value": None,
|
|
},
|
|
)
|
|
self.assertIsNone(timeseries_input.preprocess(None))
|
|
x_timeseries["range"] = (0, 1)
|
|
self.assertIsNotNone(timeseries_input.preprocess(x_timeseries))
|
|
|
|
def test_in_interface(self):
|
|
timeseries_input = gr.inputs.Timeseries(x="time", y=["retail", "food", "other"])
|
|
x_timeseries = {
|
|
"data": [[1] + [2] * len(timeseries_input.y)] * 4,
|
|
"headers": [timeseries_input.x] + timeseries_input.y,
|
|
}
|
|
iface = gr.Interface(lambda x: x, timeseries_input, "dataframe")
|
|
self.assertEqual(
|
|
iface.process([x_timeseries])[0],
|
|
[
|
|
{
|
|
"headers": ["time", "retail", "food", "other"],
|
|
"data": [[1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2]],
|
|
}
|
|
],
|
|
)
|
|
|
|
|
|
class TestNames(unittest.TestCase):
|
|
# this ensures that `components.get_component_instance()` works correctly when instantiating from components
|
|
def test_no_duplicate_uncased_names(self):
|
|
subclasses = gr.components.Component.__subclasses__()
|
|
unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses])
|
|
self.assertEqual(len(subclasses), len(unique_subclasses_uncased))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|