mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
33 lines
1.1 KiB
Python
33 lines
1.1 KiB
Python
import gradio as gr
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
def sales_projections(employee_data):
|
|
sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy()
|
|
regression_values = sales_data.apply_along_axis(lambda row:
|
|
np.array(np.poly1d(np.polyfit([0,1,2], row, 2))))
|
|
projected_months = np.repeat(np.expand_dims(
|
|
np.arange(3,12), 0), len(sales_data), axis=0)
|
|
projected_values = np.array([
|
|
month * month * regression[0] + month * regression[1] + regression[2]
|
|
for month, regression in zip(projected_months, regression_values)])
|
|
plt.plot(projected_values.T)
|
|
plt.legend(employee_data["Name"])
|
|
return employee_data, plt.gcf(), regression_values
|
|
|
|
iface = gr.Interface(sales_projections,
|
|
gr.inputs.Dataframe(
|
|
headers=["Name", "Jan Sales", "Feb Sales", "Mar Sales"],
|
|
default=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]]
|
|
),
|
|
[
|
|
"dataframe",
|
|
"figure",
|
|
"numpy"
|
|
],
|
|
description="Enter sales figures for employees to predict sales trajectory over year."
|
|
)
|
|
if __name__ == "__main__":
|
|
iface.launch()
|