mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-12 10:34:32 +08:00
19 KiB
19 KiB
In [1]:
%load_ext autoreload %autoreload 2 import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms import gradio
--------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) <ipython-input-1-800f83bb710d> in <module> 2 get_ipython().run_line_magic('autoreload', '2') 3 ----> 4 import torch 5 import torch.nn as nn 6 import torchvision ModuleNotFoundError: No module named 'torch'
In [2]:
# Device configuration device = torch.device('cpu') # Hyper-parameters input_size = 784 hidden_size = 500 num_classes = 10 num_epochs = 2 batch_size = 100 learning_rate = 0.001 # MNIST dataset train_dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data',train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-2-aa6a81b0840f> in <module> 1 # Device configuration ----> 2 device = torch.device('cpu') 3 4 # Hyper-parameters 5 input_size = 784 NameError: name 'torch' is not defined
In [3]:
# Fully connected neural network with one hidden layer class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out model = NeuralNet(input_size, hidden_size, num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # Move tensors to the configured device images = images.reshape(-1, 28*28).to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step()
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-3-b0dc3fab7f79> in <module> 1 # Fully connected neural network with one hidden layer ----> 2 class NeuralNet(nn.Module): 3 def __init__(self, input_size, hidden_size, num_classes): 4 super(NeuralNet, self).__init__() 5 self.fc1 = nn.Linear(input_size, hidden_size) NameError: name 'nn' is not defined
In [4]:
# Test the model # In test phase, we don't need to compute gradients (for memory efficiency) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 28*28).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-4-91667d2d5612> in <module> 1 # Test the model 2 # In test phase, we don't need to compute gradients (for memory efficiency) ----> 3 with torch.no_grad(): 4 correct = 0 5 total = 0 NameError: name 'torch' is not defined
In [5]:
value = torch.from_numpy(images.numpy()) print(value.dtype) value = torch.autograd.Variable(value) print(value.dtype) prediction = model(value)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-5-f12a632f31c3> in <module> ----> 1 value = torch.from_numpy(images.numpy()) 2 print(value.dtype) 3 value = torch.autograd.Variable(value) 4 print(value.dtype) 5 prediction = model(value) NameError: name 'torch' is not defined
In [6]:
images.numpy().astype('float64').dtype
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-6-3125682ab905> in <module> ----> 1 images.numpy().astype('float64').dtype NameError: name 'images' is not defined
In [7]:
prediction.data.numpy().shape
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-7-ab875561c356> in <module> ----> 1 prediction.data.numpy().shape NameError: name 'prediction' is not defined
In [8]:
prediction.data.numpy()
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-8-177468ca29d9> in <module> ----> 1 prediction.data.numpy() NameError: name 'prediction' is not defined
In [9]:
inp = gradio.inputs.Sketchpad(flatten=True, scale=1/255, dtype='float32') io = gradio.Interface(inputs=inp, outputs="label", model_type="pytorch", model=model)
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-9-bf0f365c764e> in <module> ----> 1 inp = gradio.inputs.Sketchpad(flatten=True, scale=1/255, dtype='float32') 2 io = gradio.Interface(inputs=inp, outputs="label", model_type="pytorch", model=model) NameError: name 'gradio' is not defined
In [10]:
io.launch()
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-10-137b131e2f9c> in <module> ----> 1 io.launch() NameError: name 'io' is not defined
In [11]:
model
--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-11-1f8a688cae5d> in <module> ----> 1 model NameError: name 'model' is not defined
In [ ]:
In [ ]: