mirror of
https://github.com/gradio-app/gradio.git
synced 2025-03-07 11:46:51 +08:00
* changes * changes * revert changes * changes * add changeset * notebooks script * changes * changes --------- Co-authored-by: Ali Abid <aliabid94@gmail.com> Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com> Co-authored-by: Ali Abdalla <ali.si3luwa@gmail.com>
2.5 KiB
2.5 KiB
In [ ]:
!pip install -q gradio holidays==0.24 prophet==1.1.2 pandas pypistats plotly
In [ ]:
import gradio as gr import pypistats from datetime import date from dateutil.relativedelta import relativedelta import pandas as pd from prophet import Prophet pd.options.plotting.backend = "plotly" def get_forecast(lib, time): data = pypistats.overall(lib, total=True, format="pandas") data = data.groupby("category").get_group("with_mirrors").sort_values("date") start_date = date.today() - relativedelta(months=int(time.split(" ")[0])) df = data[(data['date'] > str(start_date))] df1 = df[['date','downloads']] df1.columns = ['ds','y'] m = Prophet() m.fit(df1) future = m.make_future_dataframe(periods=90) forecast = m.predict(future) fig1 = m.plot(forecast) return fig1 with gr.Blocks() as demo: gr.Markdown( """ **Pypi Download Stats 📈 with Prophet Forecasting**: see live download stats for popular open-source libraries 🤗 along with a 3 month forecast using Prophet. The [ source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/timeseries-forecasting-with-prophet/blob/main/app.py). """) with gr.Row(): lib = gr.Dropdown(["pandas", "scikit-learn", "torch", "prophet"], label="Library", value="pandas") time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], label="Downloads over the last...", value="12 months") plt = gr.Plot() lib.change(get_forecast, [lib, time], plt, queue=False) time.change(get_forecast, [lib, time], plt, queue=False) demo.load(get_forecast, [lib, time], plt, queue=False) demo.launch()