mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-15 02:11:15 +08:00
237 lines
7.4 KiB
Python
237 lines
7.4 KiB
Python
import gradio as gr
|
|
import pandas as pd
|
|
from pathlib import Path
|
|
|
|
abs_path = Path(__file__).parent.absolute()
|
|
|
|
df = pd.read_json(str(abs_path / "assets/leaderboard_data.json"))
|
|
invisible_df = df.copy()
|
|
|
|
COLS = [
|
|
"T",
|
|
"Model",
|
|
"Average ⬆️",
|
|
"ARC",
|
|
"HellaSwag",
|
|
"MMLU",
|
|
"TruthfulQA",
|
|
"Winogrande",
|
|
"GSM8K",
|
|
"Type",
|
|
"Architecture",
|
|
"Precision",
|
|
"Merged",
|
|
"Hub License",
|
|
"#Params (B)",
|
|
"Hub ❤️",
|
|
"Model sha",
|
|
"model_name_for_query",
|
|
]
|
|
ON_LOAD_COLS = [
|
|
"T",
|
|
"Model",
|
|
"Average ⬆️",
|
|
"ARC",
|
|
"HellaSwag",
|
|
"MMLU",
|
|
"TruthfulQA",
|
|
"Winogrande",
|
|
"GSM8K",
|
|
"model_name_for_query",
|
|
]
|
|
TYPES = [
|
|
"str",
|
|
"markdown",
|
|
"number",
|
|
"number",
|
|
"number",
|
|
"number",
|
|
"number",
|
|
"number",
|
|
"number",
|
|
"str",
|
|
"str",
|
|
"str",
|
|
"str",
|
|
"bool",
|
|
"str",
|
|
"number",
|
|
"number",
|
|
"bool",
|
|
"str",
|
|
"bool",
|
|
"bool",
|
|
"str",
|
|
]
|
|
NUMERIC_INTERVALS = {
|
|
"?": pd.Interval(-1, 0, closed="right"),
|
|
"~1.5": pd.Interval(0, 2, closed="right"),
|
|
"~3": pd.Interval(2, 4, closed="right"),
|
|
"~7": pd.Interval(4, 9, closed="right"),
|
|
"~13": pd.Interval(9, 20, closed="right"),
|
|
"~35": pd.Interval(20, 45, closed="right"),
|
|
"~60": pd.Interval(45, 70, closed="right"),
|
|
"70+": pd.Interval(70, 10000, closed="right"),
|
|
}
|
|
MODEL_TYPE = [str(s) for s in df["T"].unique()]
|
|
Precision = [str(s) for s in df["Precision"].unique()]
|
|
|
|
# Searching and filtering
|
|
def update_table(
|
|
hidden_df: pd.DataFrame,
|
|
columns: list,
|
|
type_query: list,
|
|
precision_query: str,
|
|
size_query: list,
|
|
query: str,
|
|
):
|
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query) # type: ignore
|
|
filtered_df = filter_queries(query, filtered_df)
|
|
df = select_columns(filtered_df, columns)
|
|
return df
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
return df[(df["model_name_for_query"].str.contains(query, case=False))] # type: ignore
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
# We use COLS to maintain sorting
|
|
filtered_df = df[[c for c in COLS if c in df.columns and c in columns]]
|
|
return filtered_df # type: ignore
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
final_df = []
|
|
if query != "":
|
|
queries = [q.strip() for q in query.split(";")]
|
|
for _q in queries:
|
|
_q = _q.strip()
|
|
if _q != "":
|
|
temp_filtered_df = search_table(filtered_df, _q)
|
|
if len(temp_filtered_df) > 0:
|
|
final_df.append(temp_filtered_df)
|
|
if len(final_df) > 0:
|
|
filtered_df = pd.concat(final_df)
|
|
filtered_df = filtered_df.drop_duplicates( # type: ignore
|
|
subset=["Model", "Precision", "Model sha"]
|
|
)
|
|
|
|
return filtered_df
|
|
|
|
def filter_models(
|
|
df: pd.DataFrame,
|
|
type_query: list,
|
|
size_query: list,
|
|
precision_query: list,
|
|
) -> pd.DataFrame:
|
|
# Show all models
|
|
filtered_df = df
|
|
|
|
type_emoji = [t[0] for t in type_query]
|
|
filtered_df = filtered_df.loc[df["T"].isin(type_emoji)]
|
|
filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])]
|
|
|
|
numeric_interval = pd.IntervalIndex(
|
|
sorted([NUMERIC_INTERVALS[s] for s in size_query]) # type: ignore
|
|
)
|
|
params_column = pd.to_numeric(df["#Params (B)"], errors="coerce")
|
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) # type: ignore
|
|
filtered_df = filtered_df.loc[mask]
|
|
|
|
return filtered_df
|
|
|
|
demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json"))
|
|
with demo:
|
|
gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text")
|
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
search_bar = gr.Textbox(
|
|
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
|
show_label=False,
|
|
elem_id="search-bar",
|
|
)
|
|
with gr.Row():
|
|
shown_columns = gr.CheckboxGroup(
|
|
choices=COLS,
|
|
value=ON_LOAD_COLS,
|
|
label="Select columns to show",
|
|
elem_id="column-select",
|
|
interactive=True,
|
|
)
|
|
with gr.Column(min_width=320):
|
|
filter_columns_type = gr.CheckboxGroup(
|
|
label="Model types",
|
|
choices=MODEL_TYPE,
|
|
value=MODEL_TYPE,
|
|
interactive=True,
|
|
elem_id="filter-columns-type",
|
|
)
|
|
filter_columns_precision = gr.CheckboxGroup(
|
|
label="Precision",
|
|
choices=Precision,
|
|
value=Precision,
|
|
interactive=True,
|
|
elem_id="filter-columns-precision",
|
|
)
|
|
filter_columns_size = gr.CheckboxGroup(
|
|
label="Model sizes (in billions of parameters)",
|
|
choices=list(NUMERIC_INTERVALS.keys()),
|
|
value=list(NUMERIC_INTERVALS.keys()),
|
|
interactive=True,
|
|
elem_id="filter-columns-size",
|
|
)
|
|
|
|
leaderboard_table = gr.components.Dataframe(
|
|
value=df[ON_LOAD_COLS], # type: ignore
|
|
headers=ON_LOAD_COLS,
|
|
datatype=TYPES,
|
|
elem_id="leaderboard-table",
|
|
interactive=False,
|
|
visible=True,
|
|
column_widths=["2%", "33%"],
|
|
)
|
|
|
|
# Dummy leaderboard for handling the case when the user uses backspace key
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
value=invisible_df[COLS], # type: ignore
|
|
headers=COLS,
|
|
datatype=TYPES,
|
|
visible=False,
|
|
)
|
|
search_bar.submit(
|
|
update_table,
|
|
[
|
|
hidden_leaderboard_table_for_search,
|
|
shown_columns,
|
|
filter_columns_type,
|
|
filter_columns_precision,
|
|
filter_columns_size,
|
|
search_bar,
|
|
],
|
|
leaderboard_table,
|
|
)
|
|
for selector in [
|
|
shown_columns,
|
|
filter_columns_type,
|
|
filter_columns_precision,
|
|
filter_columns_size,
|
|
]:
|
|
selector.change(
|
|
update_table,
|
|
[
|
|
hidden_leaderboard_table_for_search,
|
|
shown_columns,
|
|
filter_columns_type,
|
|
filter_columns_precision,
|
|
filter_columns_size,
|
|
search_bar,
|
|
],
|
|
leaderboard_table,
|
|
queue=True,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.queue(default_concurrency_limit=40).launch()
|