mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
9b42ba8f10
* changes * changes * revert changes * changes * add changeset * notebooks script * changes * changes --------- Co-authored-by: Ali Abid <aliabid94@gmail.com> Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com> Co-authored-by: Ali Abdalla <ali.si3luwa@gmail.com>
45 lines
1.4 KiB
Python
45 lines
1.4 KiB
Python
import gradio as gr
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import torch
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
|
|
|
def user(message, history):
|
|
return "", history + [[message, None]]
|
|
|
|
def bot(history):
|
|
user_message = history[-1][0]
|
|
new_user_input_ids = tokenizer.encode(
|
|
user_message + tokenizer.eos_token, return_tensors="pt"
|
|
)
|
|
|
|
# append the new user input tokens to the chat history
|
|
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)
|
|
|
|
# generate a response
|
|
response = model.generate(
|
|
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
|
|
).tolist()
|
|
|
|
# convert the tokens to text, and then split the responses into lines
|
|
response = tokenizer.decode(response[0]).split("<|endoftext|>")
|
|
response = [
|
|
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
|
] # convert to tuples of list
|
|
history[-1] = response[0]
|
|
return history
|
|
|
|
with gr.Blocks() as demo:
|
|
chatbot = gr.Chatbot()
|
|
msg = gr.Textbox()
|
|
clear = gr.Button("Clear")
|
|
|
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
|
bot, chatbot, chatbot
|
|
)
|
|
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|