mirror of
https://github.com/gradio-app/gradio.git
synced 2025-02-17 11:29:58 +08:00
* changes * changes * fix * change * change * changes * changes * changes * changes * change * remove test config outputs * fix wflow * attempt root user * attempt root user * attempt root user * attempt root user * changes * changes * changes * changes * changes * change * changes * change * Update gradio/layouts.py Co-authored-by: Abubakar Abid <abubakar@huggingface.co> * changes Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
57 lines
1.9 KiB
Python
57 lines
1.9 KiB
Python
import gradio as gr
|
|
import shap
|
|
from transformers import pipeline
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
matplotlib.use('Agg')
|
|
|
|
|
|
sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
|
|
|
|
|
def classifier(text):
|
|
pred = sentiment_classifier(text)
|
|
return {p["label"]: p["score"] for p in pred[0]}
|
|
|
|
|
|
def interpretation_function(text):
|
|
explainer = shap.Explainer(sentiment_classifier)
|
|
shap_values = explainer([text])
|
|
# Dimensions are (batch size, text size, number of classes)
|
|
# Since we care about positive sentiment, use index 1
|
|
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
|
|
|
scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
|
|
|
|
# Filter out empty string added by shap
|
|
scores_desc = [t for t in scores_desc if t[0] != ""]
|
|
|
|
fig_m = plt.figure()
|
|
plt.bar(x=[s[0] for s in scores_desc[:5]],
|
|
height=[s[1] for s in scores_desc[:5]])
|
|
plt.title("Top words contributing to positive sentiment")
|
|
plt.ylabel("Shap Value")
|
|
plt.xlabel("Word")
|
|
return {"original": text, "interpretation": scores}, fig_m
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.Textbox(label="Input Text")
|
|
with gr.Row():
|
|
classify = gr.Button("Classify Sentiment")
|
|
interpret = gr.Button("Interpret")
|
|
with gr.Column():
|
|
label = gr.Label(label="Predicted Sentiment")
|
|
with gr.Column():
|
|
with gr.Tab("Display interpretation with built-in component"):
|
|
interpretation = gr.components.Interpretation(input_text)
|
|
with gr.Tab("Display interpretation with plot"):
|
|
interpretation_plot = gr.Plot()
|
|
|
|
classify.click(classifier, input_text, label)
|
|
interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot])
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch() |