mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-21 02:19:59 +08:00
114 lines
5.7 KiB
Python
114 lines
5.7 KiB
Python
import unittest
|
|
import pathlib
|
|
import gradio as gr
|
|
|
|
"""
|
|
WARNING: These tests have an external dependency: namely that Hugging Face's Hub and Space APIs do not change, and they keep their most famous models up. So if, e.g. Spaces is down, then these test will not pass.
|
|
"""
|
|
|
|
class TestHuggingFaceModelAPI(unittest.TestCase):
|
|
def test_text_generation(self):
|
|
model_type = "text_generation"
|
|
interface_info = gr.external.get_huggingface_interface("gpt2", api_key=None, alias=None)
|
|
self.assertEqual(interface_info["fn"].__name__, "gpt2")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Textbox)
|
|
|
|
def test_sentiment_classifier(self):
|
|
model_type = "sentiment_classifier"
|
|
interface_info = gr.external.get_huggingface_interface(
|
|
"distilbert-base-uncased-finetuned-sst-2-english", api_key=None,
|
|
alias=model_type)
|
|
self.assertEqual(interface_info["fn"].__name__, model_type)
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
def test_sentence_similarity(self):
|
|
model_type = "text-to-speech"
|
|
interface_info = gr.external.get_huggingface_interface(
|
|
"julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
api_key=None, alias=model_type)
|
|
self.assertEqual(interface_info["fn"].__name__, model_type)
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Audio)
|
|
|
|
def test_text_to_speech(self):
|
|
model_type = "text-to-speech"
|
|
interface_info = gr.external.get_huggingface_interface(
|
|
"julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
|
|
api_key=None, alias=model_type)
|
|
self.assertEqual(interface_info["fn"].__name__, model_type)
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Audio)
|
|
|
|
def test_text_to_image(self):
|
|
model_type = "text-to-image"
|
|
interface_info = gr.external.get_huggingface_interface(
|
|
"osanseviero/BigGAN-deep-128",
|
|
api_key=None, alias=model_type)
|
|
self.assertEqual(interface_info["fn"].__name__, model_type)
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Image)
|
|
|
|
|
|
class TestHuggingFaceSpaceAPI(unittest.TestCase):
|
|
def test_english_to_spanish(self):
|
|
interface_info = gr.external.get_spaces_interface("abidlabs/english_to_spanish", api_key=None, alias=None)
|
|
self.assertIsInstance(interface_info["inputs"][0], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"][0], gr.outputs.Textbox)
|
|
|
|
class TestLoadInterface(unittest.TestCase):
|
|
def test_english_to_spanish(self):
|
|
interface_info = gr.external.load_interface("spaces/abidlabs/english_to_spanish")
|
|
self.assertIsInstance(interface_info["inputs"][0], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"][0], gr.outputs.Textbox)
|
|
|
|
def test_distilbert_classification(self):
|
|
interface_info = gr.external.load_interface("distilbert-base-uncased-finetuned-sst-2-english", src="huggingface", alias="sentiment_classifier")
|
|
self.assertEqual(interface_info["fn"].__name__, "sentiment_classifier")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
def test_models_src(self):
|
|
interface_info = gr.external.load_interface("models/distilbert-base-uncased-finetuned-sst-2-english", alias="sentiment_classifier")
|
|
self.assertEqual(interface_info["fn"].__name__, "sentiment_classifier")
|
|
self.assertIsInstance(interface_info["inputs"], gr.inputs.Textbox)
|
|
self.assertIsInstance(interface_info["outputs"], gr.outputs.Label)
|
|
|
|
class TestCallingLoadInterface(unittest.TestCase):
|
|
def test_sentiment_model(self):
|
|
interface_info = gr.external.load_interface("models/distilbert-base-uncased-finetuned-sst-2-english", alias="sentiment_classifier")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("I am happy, I love you.")
|
|
self.assertGreater(output['Positive'], 0.5)
|
|
|
|
def test_image_classification_model(self):
|
|
interface_info = gr.external.load_interface("models/google/vit-base-patch16-224")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("test/images/lion.jpg")
|
|
self.assertGreater(output['lion'], 0.5)
|
|
|
|
def test_translation_model(self):
|
|
interface_info = gr.external.load_interface("models/t5-base")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("My name is Sarah and I live in London")
|
|
self.assertEquals(output, 'Mein Name ist Sarah und ich lebe in London')
|
|
|
|
def test_numerical_to_label_space(self):
|
|
interface_info = gr.external.load_interface("spaces/abidlabs/titanic-survival")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("male", 77, 10)
|
|
self.assertLess(output['Survives'], 0.5)
|
|
|
|
def test_image_to_image_space(self):
|
|
def assertIsFile(path):
|
|
if not pathlib.Path(path).resolve().is_file():
|
|
raise AssertionError("File does not exist: %s" % str(path))
|
|
|
|
interface_info = gr.external.load_interface("spaces/abidlabs/image-identity")
|
|
io = gr.Interface(**interface_info)
|
|
output = io("test/images/lion.jpg")
|
|
assertIsFile(output)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main() |