mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
cc0cff893f
- black formatting - isort formatting
117 lines
3.0 KiB
Python
117 lines
3.0 KiB
Python
import os
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import sklearn
|
|
from sklearn import preprocessing
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.metrics import accuracy_score
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
import gradio as gr
|
|
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv"))
|
|
|
|
|
|
def encode_age(df):
|
|
df.Age = df.Age.fillna(-0.5)
|
|
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
|
categories = pd.cut(df.Age, bins, labels=False)
|
|
df.Age = categories
|
|
return df
|
|
|
|
|
|
def encode_fare(df):
|
|
df.Fare = df.Fare.fillna(-0.5)
|
|
bins = (-1, 0, 8, 15, 31, 1000)
|
|
categories = pd.cut(df.Fare, bins, labels=False)
|
|
df.Fare = categories
|
|
return df
|
|
|
|
|
|
def encode_df(df):
|
|
df = encode_age(df)
|
|
df = encode_fare(df)
|
|
sex_mapping = {"male": 0, "female": 1}
|
|
df = df.replace({"Sex": sex_mapping})
|
|
embark_mapping = {"S": 1, "C": 2, "Q": 3}
|
|
df = df.replace({"Embarked": embark_mapping})
|
|
df.Embarked = df.Embarked.fillna(0)
|
|
df["Company"] = 0
|
|
df.loc[(df["SibSp"] > 0), "Company"] = 1
|
|
df.loc[(df["Parch"] > 0), "Company"] = 2
|
|
df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3
|
|
df = df[
|
|
[
|
|
"PassengerId",
|
|
"Pclass",
|
|
"Sex",
|
|
"Age",
|
|
"Fare",
|
|
"Embarked",
|
|
"Company",
|
|
"Survived",
|
|
]
|
|
]
|
|
return df
|
|
|
|
|
|
train = encode_df(data)
|
|
|
|
X_all = train.drop(["Survived", "PassengerId"], axis=1)
|
|
y_all = train["Survived"]
|
|
|
|
num_test = 0.20
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X_all, y_all, test_size=num_test, random_state=23
|
|
)
|
|
|
|
clf = RandomForestClassifier()
|
|
clf.fit(X_train, y_train)
|
|
predictions = clf.predict(X_test)
|
|
|
|
|
|
def predict_survival(passenger_class, is_male, age, company, fare, embark_point):
|
|
df = pd.DataFrame.from_dict(
|
|
{
|
|
"Pclass": [passenger_class + 1],
|
|
"Sex": [0 if is_male else 1],
|
|
"Age": [age],
|
|
"Company": [
|
|
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
|
|
],
|
|
"Fare": [fare],
|
|
"Embarked": [embark_point + 1],
|
|
}
|
|
)
|
|
df = encode_age(df)
|
|
df = encode_fare(df)
|
|
pred = clf.predict_proba(df)[0]
|
|
return {"Perishes": pred[0], "Survives": pred[1]}
|
|
|
|
|
|
iface = gr.Interface(
|
|
predict_survival,
|
|
[
|
|
gr.inputs.Dropdown(["first", "second", "third"], type="index"),
|
|
"checkbox",
|
|
gr.inputs.Slider(0, 80),
|
|
gr.inputs.CheckboxGroup(
|
|
["Sibling", "Child"], label="Travelling with (select all)"
|
|
),
|
|
gr.inputs.Number(),
|
|
gr.inputs.Radio(["S", "C", "Q"], type="index"),
|
|
],
|
|
"label",
|
|
examples=[
|
|
["first", True, 30, [], 50, "S"],
|
|
["second", False, 40, ["Sibling", "Child"], 10, "Q"],
|
|
["third", True, 30, ["Child"], 20, "S"],
|
|
],
|
|
interpretation="default",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch()
|