Go to file
2019-03-06 00:35:14 -08:00
.ipynb_checkpoints
build/lib/gradio deteled some unnecessary files 2019-02-27 16:59:12 -08:00
dist added ngrok check for linux 2019-02-24 23:43:46 -08:00
examples added embed to jupyter notebook as default, launch(new_tab=True) for launching on a new tab 2019-03-06 00:35:04 -08:00
gradio Merge branch 'master' of https://github.com/abidlabs/gradiome 2019-03-06 00:35:14 -08:00
gradio.egg-info added ngrok check for linux 2019-02-24 23:43:46 -08:00
screenshots skin benign 2019-02-28 01:41:32 -08:00
test got the class probs to be working! 2019-03-05 23:23:04 -08:00
web add landing page v1 2019-03-02 23:33:34 -08:00
.gitignore removed ngrok 2019-02-24 22:45:18 -08:00
build-interface.py confidence intervals, img upload bug fix 2019-03-05 22:53:59 -08:00
index.html
MANIFEST.in tracking static files 2019-02-19 01:35:14 -08:00
README.md Update README.md 2019-02-20 08:45:44 -08:00
setup.py added ngrok check for linux 2019-02-24 23:43:46 -08:00
Test Notebook.ipynb got the class probs to be working! 2019-03-05 23:23:04 -08:00

Gradiome / Gradio

Gradio is a python library that allows you to place input and output interfaces over trained models to make it easy for you to "play around" with your model. Gradio runs entirely locally using your browser.

To get a sense of gradio, take a look at the python notebooks in the examples folder, or read on below!

Installation

pip install gradio

(you may need to replace pip with pip3 if you're running python3).

Usage

Gradio is very easy to use with your existing code. The general way it's used is something like this:

import tensorflow as tf
import gradio

mdl = tf.keras.models.Sequential()
# ... define and train the model as you would normally

iface = gradio.Interface(input=sketchpad, output=class, model_type=keras, model=mdl)
iface.launch()

Changing the input and output parameters in the Interface face object allow you to create different interfaces, depending on the needs of your model. Take a look at the python notebooks for more examples. The currently supported interfaces are as follows:

Input interfaces:

  • Sketchpad
  • ImageUplaod
  • Webcam
  • Textbox

Output interfaces:

  • Class
  • Textbox

Screenshots

Here are a few screenshots that show examples of gradio interfaces

MNIST Digit Recognition (Input: Sketchpad, Output: Class)

iface = gradio.Interface(input='sketchpad', output='class', model=model, model_type='keras')
iface.launch()

alt text

Facial Emotion Detector (Input: Webcam, Output: Class)

iface = gradio.Interface(input='webcam', output='class', model=model, model_type='keras')
iface.launch()

alt text

Sentiment Analysis (Input: Textbox, Output: Class)

iface = gradio.Interface(input='textbox', output='class', model=model, model_type='keras')
iface.launch()

alt text