mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-12 10:34:32 +08:00
49 lines
954 B
Python
49 lines
954 B
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# In[2]:
|
|
|
|
|
|
# installing transformers
|
|
# !pip install -q git+https://github.com/huggingface/transformers.git
|
|
# !pip install -q tensorflow==2.1
|
|
|
|
|
|
# In[12]:
|
|
|
|
|
|
import tensorflow as tf
|
|
from transformers import TFGPT2LMHeadModel, GPT2Tokenizer
|
|
import gradio
|
|
|
|
|
|
# In[4]:
|
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
|
# add the EOS token as PAD token to avoid warnings
|
|
model = TFGPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
|
|
|
|
|
|
# In[15]:
|
|
|
|
|
|
def predict(inp):
|
|
input_ids = tokenizer.encode(inp, return_tensors='tf')
|
|
beam_output = model.generate(input_ids, max_length=49, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
|
|
output = tokenizer.decode(beam_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
return ".".join(output.split(".")[:-1]) + "."
|
|
|
|
# In[18]:
|
|
|
|
|
|
gradio.Interface(predict,"textbox","textbox").launch(inbrowser=True)
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
|
|
|