gradio/test/test_interpretation.py
Freddy Boulton e0a55df7dc
Modify CI to check for unused imports (#2555)
* Add lint script + remove unused imports

* Add lint file to sc
2022-10-28 10:56:18 -04:00

129 lines
4.8 KiB
Python

import os
from copy import deepcopy
import numpy as np
import pytest
import gradio.interpretation
from gradio import Interface, media_data
from gradio.processing_utils import decode_base64_to_image
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
class TestDefault:
@pytest.mark.asyncio
async def test_default_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
text_interface = Interface(
max_word_len, "textbox", "label", interpretation="default"
)
interpretation = (await text_interface.interpret(["quickest brown fox"]))[0][
"interpretation"
]
assert interpretation[0][1] > 0 # Checks to see if the first word has >0 score.
assert 0 == interpretation[-1][1] # Checks to see if the last word has 0 score.
class TestShapley:
@pytest.mark.asyncio
async def test_shapley_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
text_interface = Interface(
max_word_len, "textbox", "label", interpretation="shapley"
)
interpretation = (await text_interface.interpret(["quickest brown fox"]))[0][
"interpretation"
][0]
assert interpretation[1] > 0 # Checks to see if the first word has >0 score.
class TestCustom:
@pytest.mark.asyncio
async def test_custom_text(self):
max_word_len = lambda text: max([len(word) for word in text.split(" ")])
custom = lambda text: [(char, 1) for char in text]
text_interface = Interface(
max_word_len, "textbox", "label", interpretation=custom
)
result = (await text_interface.interpret(["quickest brown fox"]))[0][
"interpretation"
][0]
assert result[1] == 1 # Checks to see if the first letter has score of 1.
@pytest.mark.asyncio
async def test_custom_img(self):
max_pixel_value = lambda img: img.max()
custom = lambda img: img.tolist()
img_interface = Interface(
max_pixel_value, "image", "label", interpretation=custom
)
result = (await img_interface.interpret([deepcopy(media_data.BASE64_IMAGE)]))[
0
]["interpretation"]
expected_result = np.asarray(
decode_base64_to_image(deepcopy(media_data.BASE64_IMAGE)).convert("RGB")
).tolist()
assert result == expected_result
class TestHelperMethods:
def test_diff(self):
diff = gradio.interpretation.diff(13, "2")
assert diff == 11
diff = gradio.interpretation.diff("cat", "dog")
assert diff == 1
diff = gradio.interpretation.diff("cat", "cat")
assert diff == 0
def test_quantify_difference_with_number(self):
iface = Interface(lambda text: text, ["textbox"], ["number"])
diff = gradio.interpretation.quantify_difference_in_label(iface, [4], [6])
assert diff == -2
def test_quantify_difference_with_label(self):
iface = Interface(lambda text: len(text), ["textbox"], ["label"])
diff = gradio.interpretation.quantify_difference_in_label(iface, ["3"], ["10"])
assert -7 == diff
diff = gradio.interpretation.quantify_difference_in_label(iface, ["0"], ["100"])
assert -100 == diff
def test_quantify_difference_with_confidences(self):
iface = Interface(lambda text: len(text), ["textbox"], ["label"])
output_1 = {"cat": 0.9, "dog": 0.1}
output_2 = {"cat": 0.6, "dog": 0.4}
output_3 = {"cat": 0.1, "dog": 0.6}
diff = gradio.interpretation.quantify_difference_in_label(
iface, [output_1], [output_2]
)
assert 0.3 == pytest.approx(diff)
diff = gradio.interpretation.quantify_difference_in_label(
iface, [output_1], [output_3]
)
assert 0.8 == pytest.approx(diff)
def test_get_regression_value(self):
iface = Interface(lambda text: text, ["textbox"], ["label"])
output_1 = {"cat": 0.9, "dog": 0.1}
output_2 = {"cat": float("nan"), "dog": 0.4}
output_3 = {"cat": 0.1, "dog": 0.6}
diff = gradio.interpretation.get_regression_or_classification_value(
iface, [output_1], [output_2]
)
assert 0 == diff
diff = gradio.interpretation.get_regression_or_classification_value(
iface, [output_1], [output_3]
)
assert 0.1 == pytest.approx(diff)
def test_get_classification_value(self):
iface = Interface(lambda text: text, ["textbox"], ["label"])
diff = gradio.interpretation.get_regression_or_classification_value(
iface, ["cat"], ["test"]
)
assert 1 == diff
diff = gradio.interpretation.get_regression_or_classification_value(
iface, ["test"], ["test"]
)
assert 0 == diff