mirror of
https://github.com/gradio-app/gradio.git
synced 2024-11-21 01:01:05 +08:00
40 lines
1.0 KiB
Python
40 lines
1.0 KiB
Python
import random
|
|
import os
|
|
import gradio as gr
|
|
|
|
|
|
def fraud_detector(card_activity, categories, sensitivity):
|
|
activity_range = random.randint(0, 100)
|
|
drop_columns = [
|
|
column for column in ["retail", "food", "other"] if column not in categories
|
|
]
|
|
if len(drop_columns):
|
|
card_activity.drop(columns=drop_columns, inplace=True)
|
|
return (
|
|
card_activity,
|
|
card_activity,
|
|
{"fraud": activity_range / 100.0, "not fraud": 1 - activity_range / 100.0},
|
|
)
|
|
|
|
|
|
demo = gr.Interface(
|
|
fraud_detector,
|
|
[
|
|
gr.Timeseries(x="time", y=["retail", "food", "other"]),
|
|
gr.CheckboxGroup(
|
|
["retail", "food", "other"], value=["retail", "food", "other"]
|
|
),
|
|
gr.Slider(1, 3),
|
|
],
|
|
[
|
|
"dataframe",
|
|
gr.Timeseries(x="time", y=["retail", "food", "other"]),
|
|
gr.Label(label="Fraud Level"),
|
|
],
|
|
examples=[
|
|
[os.path.join(os.path.dirname(__file__), "fraud.csv"), ["retail", "food", "other"], 1.0],
|
|
],
|
|
)
|
|
if __name__ == "__main__":
|
|
demo.launch()
|