gradio/demo/image_classifier.py
2020-11-11 06:15:53 -08:00

41 lines
1.0 KiB
Python

# Demo: (Image) -> (Label)
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import requests
from urllib.request import urlretrieve
import json
import os
# Load human-readable labels for ImageNet.
current_dir = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(current_dir, "files/imagenet_labels.json")) as labels_file:
labels = json.load(labels_file)
mobile_net = tf.keras.applications.MobileNetV2()
def image_classifier(im):
arr = np.expand_dims(im, axis=0)
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
prediction = mobile_net.predict(arr).flatten()
return {labels[i]: float(prediction[i]) for i in range(1000)}
image = gr.inputs.Image(shape=(224, 224))
label = gr.outputs.Label(num_top_classes=3)
iface = gr.Interface(image_classifier, image, label,
capture_session=True,
interpretation="default",
examples=[
["images/cheetah1.jpg"],
["images/lion.jpg"]
])
if __name__ == "__main__":
iface.launch()