mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
91 lines
4.5 KiB
HTML
91 lines
4.5 KiB
HTML
<html>
|
|
<head>
|
|
<title>Gradio</title>
|
|
<link href="https://fonts.googleapis.com/css?family=Open+Sans" rel="stylesheet">
|
|
<link href="../style/style.css" rel="stylesheet">
|
|
<link href="../style/blog.css" rel="stylesheet">
|
|
<link href="../style/gradio.css" rel="stylesheet">
|
|
<link rel="stylesheet"
|
|
href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/github.min.css">
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script>
|
|
<script>hljs.initHighlightingOnLoad();</script>
|
|
</head>
|
|
<body>
|
|
<nav>
|
|
<img src="../img/logo_inline.png" />
|
|
<a href="../index.html">Gradio</a>
|
|
<a href="../getting_started.html">Getting Started</a>
|
|
<a href="../sharing.html">Sharing</a>
|
|
<a href="../blog.html">Blog</a>
|
|
</nav>
|
|
<div class="content">
|
|
<div class="row">
|
|
<div class="leftcolumn">
|
|
<div class="card">
|
|
<h2>Beginner's Tutorial: Creating a Sketchpad for a Keras MNIST Model</h2>
|
|
<h4>Abubakar Abid, April 9, 2019</h4>
|
|
<img src="../img/mnist-sketchpad-screenshot.png"></img>
|
|
<p>Gradio is a python library that makes it easy to turn your machine learning models into visual interfaces!
|
|
This tutorial shows you how to do that with the "Hello World" of machine learning models: a model that we train
|
|
from scratch to classify hand-written digits on the MNIST dataset. By the end, you will create an interface
|
|
that allows you to draw handwritten digits and see the results of the classifier. This post comes with a companion
|
|
collaboratory notebook that allows you to run the code (and embed the interface) directly in a browser window.
|
|
<a href="https://colab.research.google.com/drive/1DQSuxGARUZ-v4ZOAuw-Hf-8zqegpmes-">Check out the colab notebook here.</a></p>
|
|
<h3>Installing Gradio</h3>
|
|
<p>If you haven't already installed gradio, go ahead and do so. It's super easy as long as you have Python3 already on your machine:</p>
|
|
<pre><code class="bash">pip install gradio</code></pre>
|
|
<h3>The MNIST Dataset</h3>
|
|
<p>The MNIST dataset consists of images of handwritten digits. We'll be training a model to classify the image
|
|
into the digit written, from 0 through 9, so let's load the data.
|
|
|
|
<pre><code class="python">import tensorflow as tf
|
|
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
|
x_train, x_test = x_train / 255.0, x_test / 255.0</code></pre>
|
|
|
|
Here is a sample of handwritten digits.</p>
|
|
<img src="../img/mnist-examples.jpg"></img>
|
|
<h3>Training a Keras Model</h3>
|
|
<p>By using the keras API from the tensorflow package, we can train a model in just a few lines of code. Here,
|
|
we're not going to train a very complicated model -- it'll just be a fully connected neural network. Since we're
|
|
not really going for record accuracies, let's just train it only for 5 epochs.</p>
|
|
|
|
<pre><code class="python">model = tf.keras.models.Sequential([
|
|
tf.keras.layers.Flatten(),
|
|
tf.keras.layers.Dense(512, activation=tf.nn.relu),
|
|
tf.keras.layers.Dropout(0.2),
|
|
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
|
|
])
|
|
|
|
model.compile(optimizer='adam',
|
|
loss='sparse_categorical_crossentropy',
|
|
metrics=['accuracy'])
|
|
model.fit(x_train, y_train, epochs=1)</code></pre>
|
|
|
|
<h3>Launching a Gradio Interface</h3>
|
|
<p>Now that we have our keras model trained, we'll want to actually define the interface. What's the appropriate
|
|
interface to use? For the input, we can use a Sketchpad, so that users can use their cursor to create new digits and
|
|
test the model (we call this process <em>interactive inference</em>). The output of the model is simply a label,
|
|
so we will use the Label interface. </p>
|
|
|
|
<pre><code class="python">io = gradio.Interface(
|
|
inputs="sketchpad",
|
|
outputs="label",
|
|
model=model,
|
|
model_type='keras')
|
|
|
|
io.launch(inline=True, share=False)
|
|
</code></pre>
|
|
And that's it. Try it out <a href="https://colab.research.google.com/drive/1DQSuxGARUZ-v4ZOAuw-Hf-8zqegpmes-">in the colab notebook here.</a>
|
|
You'll notice that the interface is embedded directly in the colab notebook!</p>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
<footer>
|
|
<img src="../img/logo_inline.png" />
|
|
</footer>
|
|
<body>
|
|
</html>
|