Go to file
2019-06-19 12:03:54 -07:00
.circleci more fixes 2019-06-19 12:03:54 -07:00
build/lib/gradio just removed notebooks 2019-04-28 23:41:31 -07:00
examples just removed notebooks 2019-04-28 23:41:31 -07:00
gradio fix unit tests 2019-06-18 13:13:50 -07:00
gradio.egg-info latest pypi version 2019-04-20 00:58:29 -07:00
screenshots skin benign 2019-02-28 01:41:32 -08:00
src saliency 2019-04-29 10:04:22 -07:00
test more fixes 2019-06-19 12:03:54 -07:00
web added saliency documentation 2019-04-29 10:53:49 -07:00
.gitignore just removed notebooks 2019-04-28 23:41:31 -07:00
build-interface.py fix all interfaces 2019-04-10 10:50:43 -07:00
index.html seperated inputs and outputs, added webcam interface 2019-02-16 20:11:28 -08:00
MANIFEST.in 0.4.4 2019-03-25 13:17:46 -07:00
README.md Update README.md 2019-06-14 05:17:55 -04:00
setup.py latest pypi version 2019-04-20 00:58:29 -07:00
test.png saliency 2019-04-29 10:04:22 -07:00

Gradio

CircleCI

Gradio is a python library that allows you to place input and output interfaces over trained models to make it easy for you to "play around" with your model. Gradio runs entirely locally using your browser.

To get a sense of gradio, take a look at the python notebooks in the examples folder, or read on below! And be sure to visit the gradio website: www.gradio.app.

Installation

pip install gradio

(you may need to replace pip with pip3 if you're running python3).

Usage

Gradio is very easy to use with your existing code. Here is a minimum working example:

import gradio
import tensorflow as tf
image_mdl = tf.keras.applications.inception_v3.InceptionV3()

io = gradio.Interface(inputs="imageupload", outputs="label", model_type="keras", model=image_mdl)
io.launch()

You can supply your own model instead of the pretrained model above, as well as use different kinds of models, not just keras models. Changing the input and output parameters in the Interface face object allow you to create different interfaces, depending on the needs of your model. Take a look at the python notebooks for more examples. The currently supported interfaces are as follows:

Input interfaces:

  • Sketchpad
  • ImageUplaod
  • Webcam
  • Textbox

Output interfaces:

  • Label
  • Textbox

Screenshots

Here are a few screenshots that show examples of gradio interfaces

MNIST Digit Recognition (Input: Sketchpad, Output: Label)

iface = gradio.Interface(input='sketchpad', output='label', model=model, model_type='keras')
iface.launch()

alt text

Facial Emotion Detector (Input: Webcam, Output: Label)

iface = gradio.Interface(inputs='webcam', outputs='label', model=model, model_type='keras')
iface.launch()

alt text

Sentiment Analysis (Input: Textbox, Output: Label)

iface = gradio.Interface(inputs='textbox', outputs='label', model=model, model_type='keras')
iface.launch()

alt text

More Documentation

More detailed and up-to-date documentation can be found on the gradio website: www.gradio.app.