import os import tempfile from unittest.mock import patch import pytest from starlette.testclient import TestClient import gradio as gr os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" @patch("gradio.helpers.CACHED_FOLDER", tempfile.mkdtemp()) class TestExamples: def test_handle_single_input(self): examples = gr.Examples(["hello", "hi"], gr.Textbox()) assert examples.processed_examples == [["hello"], ["hi"]] examples = gr.Examples([["hello"]], gr.Textbox()) assert examples.processed_examples == [["hello"]] examples = gr.Examples(["test/test_files/bus.png"], gr.Image()) assert examples.processed_examples == [[gr.media_data.BASE64_IMAGE]] def test_handle_multiple_inputs(self): examples = gr.Examples( [["hello", "test/test_files/bus.png"]], [gr.Textbox(), gr.Image()] ) assert examples.processed_examples == [["hello", gr.media_data.BASE64_IMAGE]] def test_handle_directory(self): examples = gr.Examples("test/test_files/images", gr.Image()) assert examples.processed_examples == [ [gr.media_data.BASE64_IMAGE], [gr.media_data.BASE64_IMAGE], ] def test_handle_directory_with_log_file(self): examples = gr.Examples( "test/test_files/images_log", [gr.Image(label="im"), gr.Text()] ) assert examples.processed_examples == [ [gr.media_data.BASE64_IMAGE, "hello"], [gr.media_data.BASE64_IMAGE, "hi"], ] for sample in examples.dataset.samples: assert os.path.isabs(sample[0]) def test_examples_per_page(self): examples = gr.Examples(["hello", "hi"], gr.Textbox(), examples_per_page=2) assert examples.dataset.get_config()["samples_per_page"] == 2 @pytest.mark.asyncio async def test_no_preprocessing(self): with gr.Blocks(): image = gr.Image() textbox = gr.Textbox() examples = gr.Examples( examples=["test/test_files/bus.png"], inputs=image, outputs=textbox, fn=lambda x: x, cache_examples=True, preprocess=False, ) prediction = await examples.load_from_cache(0) assert prediction == [gr.media_data.BASE64_IMAGE] @pytest.mark.asyncio async def test_no_postprocessing(self): def im(x): return [gr.media_data.BASE64_IMAGE] with gr.Blocks(): text = gr.Textbox() gall = gr.Gallery() examples = gr.Examples( examples=["hi"], inputs=text, outputs=gall, fn=im, cache_examples=True, postprocess=False, ) prediction = await examples.load_from_cache(0) assert prediction[0][0][0]["data"] == gr.media_data.BASE64_IMAGE @patch("gradio.helpers.CACHED_FOLDER", tempfile.mkdtemp()) class TestExamplesDataset: def test_no_headers(self): examples = gr.Examples("test/test_files/images_log", [gr.Image(), gr.Text()]) assert examples.dataset.headers == [] def test_all_headers(self): examples = gr.Examples( "test/test_files/images_log", [gr.Image(label="im"), gr.Text(label="your text")], ) assert examples.dataset.headers == ["im", "your text"] def test_some_headers(self): examples = gr.Examples( "test/test_files/images_log", [gr.Image(label="im"), gr.Text()] ) assert examples.dataset.headers == ["im", ""] @patch("gradio.helpers.CACHED_FOLDER", tempfile.mkdtemp()) class TestProcessExamples: @pytest.mark.asyncio async def test_caching(self): io = gr.Interface( lambda x: "Hello " + x, "text", "text", examples=[["World"], ["Dunya"], ["Monde"]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(1) assert prediction[0] == "Hello Dunya" @pytest.mark.asyncio async def test_caching_image(self): io = gr.Interface( lambda x: x, "image", "image", examples=[["test/test_files/bus.png"]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(0) assert prediction[0].startswith("") @pytest.mark.asyncio async def test_caching_audio(self): io = gr.Interface( lambda x: x, "audio", "audio", examples=[["test/test_files/audio_sample.wav"]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(0) assert prediction[0]["data"].startswith("data:audio/wav;base64,UklGRgA/") @pytest.mark.asyncio async def test_caching_with_update(self): io = gr.Interface( lambda x: gr.update(visible=False), "text", "image", examples=[["World"], ["Dunya"], ["Monde"]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(1) assert prediction[0] == { "visible": False, "__type__": "update", } @pytest.mark.asyncio async def test_caching_with_mix_update(self): io = gr.Interface( lambda x: [gr.update(lines=4, value="hello"), "test/test_files/bus.png"], "text", ["text", "image"], examples=[["World"], ["Dunya"], ["Monde"]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(1) assert prediction[0] == { "lines": 4, "value": "hello", "__type__": "update", } @pytest.mark.asyncio async def test_caching_with_dict(self): text = gr.Textbox() out = gr.Label() io = gr.Interface( lambda _: {text: gr.update(lines=4, interactive=False), out: "lion"}, "textbox", [text, out], examples=["abc"], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(0) assert not any(d["trigger"] == "fake_event" for d in io.config["dependencies"]) assert prediction == [ {"lines": 4, "__type__": "update", "mode": "static"}, {"label": "lion"}, ] def test_raise_helpful_error_message_if_providing_partial_examples(self, tmp_path): def foo(a, b): return a + b with pytest.warns( UserWarning, match="^Examples are being cached but not all input components have", ): with pytest.raises(Exception): gr.Interface( foo, inputs=["text", "text"], outputs=["text"], examples=[["foo"], ["bar"]], cache_examples=True, ) with pytest.warns( UserWarning, match="^Examples are being cached but not all input components have", ): with pytest.raises(Exception): gr.Interface( foo, inputs=["text", "text"], outputs=["text"], examples=[["foo", "bar"], ["bar", None]], cache_examples=True, ) def foo_no_exception(a, b=2): return a * b gr.Interface( foo_no_exception, inputs=["text", "number"], outputs=["text"], examples=[["foo"], ["bar"]], cache_examples=True, ) def many_missing(a, b, c): return a * b with pytest.warns( UserWarning, match="^Examples are being cached but not all input components have", ): with pytest.raises(Exception): gr.Interface( many_missing, inputs=["text", "number", "number"], outputs=["text"], examples=[["foo", None, None], ["bar", 2, 3]], cache_examples=True, ) @pytest.mark.asyncio async def test_caching_with_batch(self): def trim_words(words, lens): trimmed_words = [] for w, l in zip(words, lens): trimmed_words.append(w[:l]) return [trimmed_words] io = gr.Interface( trim_words, ["textbox", gr.Number(precision=0)], ["textbox"], batch=True, max_batch_size=16, examples=[["hello", 3], ["hi", 4]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(0) assert prediction == ["hel"] @pytest.mark.asyncio async def test_caching_with_batch_multiple_outputs(self): def trim_words(words, lens): trimmed_words = [] for w, l in zip(words, lens): trimmed_words.append(w[:l]) return trimmed_words, lens io = gr.Interface( trim_words, ["textbox", gr.Number(precision=0)], ["textbox", gr.Number(precision=0)], batch=True, max_batch_size=16, examples=[["hello", 3], ["hi", 4]], cache_examples=True, ) prediction = await io.examples_handler.load_from_cache(0) assert prediction == ["hel", "3"] @pytest.mark.asyncio async def test_caching_with_non_io_component(self): def predict(name): return name, gr.update(visible=True) with gr.Blocks(): t1 = gr.Textbox() with gr.Column(visible=False) as c: t2 = gr.Textbox() examples = gr.Examples( [["John"], ["Mary"]], fn=predict, inputs=[t1], outputs=[t2, c], cache_examples=True, ) prediction = await examples.load_from_cache(0) assert prediction == ["John", {"visible": True, "__type__": "update"}] def test_end_to_end(self): def concatenate(str1, str2): return str1 + str2 io = gr.Interface( concatenate, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.Textbox(), examples=[["Hello,", None], ["Michael", None]], ) app, _, _ = io.launch(prevent_thread_lock=True) client = TestClient(app) response = client.post("/api/predict/", json={"fn_index": 5, "data": [0]}) assert response.json()["data"] == ["Hello,"] response = client.post("/api/predict/", json={"fn_index": 5, "data": [1]}) assert response.json()["data"] == ["Michael"] def test_end_to_end_cache_examples(self): def concatenate(str1, str2): return str1 + " " + str2 io = gr.Interface( concatenate, inputs=[gr.Textbox(), gr.Textbox()], outputs=gr.Textbox(), examples=[["Hello,", "World"], ["Michael", "Jordan"]], cache_examples=True, ) app, _, _ = io.launch(prevent_thread_lock=True) client = TestClient(app) response = client.post("/api/predict/", json={"fn_index": 5, "data": [0]}) assert response.json()["data"] == ["Hello,", "World", "Hello, World"] response = client.post("/api/predict/", json={"fn_index": 5, "data": [1]}) assert response.json()["data"] == ["Michael", "Jordan", "Michael Jordan"]