from transformers import pipeline import gradio as gr asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") classifier = pipeline("text-classification") def speech_to_text(speech): text = asr(speech)["text"] return text def text_to_sentiment(text): return classifier(text)[0]["label"] demo = gr.Blocks() with demo: m = gr.Audio(type="filepath") t = gr.Textbox() l = gr.Label() b1 = gr.Button("Recognize Speech") b2 = gr.Button("Classify Sentiment") b1.click(speech_to_text, inputs=m, outputs=t) b2.click(text_to_sentiment, inputs=t, outputs=l) if __name__ == "__main__": demo.launch()