import spacy from spacy import displacy import gradio as gr nlp = spacy.load("en_core_web_sm") def text_analysis(text): doc = nlp(text) html = displacy.render(doc, style="dep", page=True) html = "
" + html + "
" pos_count = { "char_count": len(text), "token_count": 0, } pos_tokens = [] for token in doc: pos_tokens.extend([(token.text, token.pos_), (" ", None)]) return pos_tokens, pos_count, html iface = gr.Interface( text_analysis, gr.inputs.Textbox(placeholder="Enter sentence here..."), [ "highlight", "key_values", "html" ], examples=[ ["What a beautiful morning for a walk!"], ["It was the best of times, it was the worst of times."], ] ) iface.test_launch() if __name__ == "__main__": iface.launch()