import unittest import gradio as gr import numpy as np import pandas as pd import matplotlib.pyplot as plt import tempfile import os os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" class OutputComponent(unittest.TestCase): def test_as_component(self): output = gr.outputs.OutputComponent(label="Test Input") self.assertEqual(output.postprocess("Hello World!"), "Hello World!") self.assertEqual(output.deserialize(1), 1) class TestTextbox(unittest.TestCase): def test_as_component(self): with self.assertRaises(ValueError): wrong_type = gr.outputs.Textbox(type="unknown") wrong_type.postprocess(0) def test_in_interface(self): iface = gr.Interface(lambda x: x[-1], "textbox", gr.outputs.Textbox()) self.assertEqual(iface.process(["Hello"])[0], ["o"]) iface = gr.Interface(lambda x: x / 2, "number", gr.outputs.Textbox(type="number")) self.assertEqual(iface.process([10])[0], [5]) class TestLabel(unittest.TestCase): def test_as_component(self): y = 'happy' label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual(label, {"label": "happy"}) self.assertEqual(label_output.deserialize(y), y) self.assertEqual(label_output.deserialize(label), y) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, y) y = { 3: 0.7, 1: 0.2, 0: 0.1 } label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual(label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, {"label": 0, "confidence": 0.1}, ] }) label_output = gr.outputs.Label(num_top_classes=2) label = label_output.postprocess(y) self.assertDictEqual(label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, ] }) with self.assertRaises(ValueError): label_output.postprocess([1, 2, 3]) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, '{"3": 0.7, "1": 0.2}') self.assertEqual(label_output.restore_flagged(to_save), {"3": 0.7, "1": 0.2}) with self.assertRaises(ValueError): label_output = gr.outputs.Label(type="unknown") label_output.deserialize([1, 2, 3]) def test_in_interface(self): x_img = gr.test_data.BASE64_IMAGE def rgb_distribution(img): rgb_dist = np.mean(img, axis=(0, 1)) rgb_dist /= np.sum(rgb_dist) rgb_dist = np.round(rgb_dist, decimals=2) return { "red": rgb_dist[0], "green": rgb_dist[1], "blue": rgb_dist[2], } iface = gr.Interface(rgb_distribution, "image", "label") output = iface.process([x_img])[0][0] self.assertDictEqual(output, { 'label': 'red', 'confidences': [ {'label': 'red', 'confidence': 0.44}, {'label': 'green', 'confidence': 0.28}, {'label': 'blue', 'confidence': 0.28} ] }) class TestImage(unittest.TestCase): def test_as_component(self): y_img = gr.processing_utils.decode_base64_to_image(gr.test_data.BASE64_IMAGE) image_output = gr.outputs.Image() self.assertTrue(image_output.postprocess(y_img).startswith("")) self.assertTrue(image_output.postprocess(np.array(y_img)).startswith("")) with self.assertWarns(DeprecationWarning): plot_output = gr.outputs.Image(plot=True) xpoints = np.array([0, 6]) ypoints = np.array([0, 250]) fig = plt.figure() p = plt.plot(xpoints, ypoints) self.assertTrue(plot_output.postprocess(fig).startswith("data:image/png;base64,")) with self.assertRaises(ValueError): image_output.postprocess([1, 2, 3]) image_output = gr.outputs.Image(type="numpy") self.assertTrue(image_output.postprocess(y_img).startswith("data:image/png;base64,")) with tempfile.TemporaryDirectory() as tmpdirname: to_save = image_output.save_flagged(tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None) self.assertEqual("image_output/0.png", to_save) to_save = image_output.save_flagged(tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None) self.assertEqual("image_output/1.png", to_save) def test_in_interface(self): def generate_noise(width, height): return np.random.randint(0, 256, (width, height, 3)) iface = gr.Interface(generate_noise, ["slider", "slider"], "image") self.assertTrue(iface.process([10, 20])[0][0].startswith("data:image/png;base64")) class TestVideo(unittest.TestCase): def test_as_component(self): y_vid = "test/test_files/video_sample.mp4" video_output = gr.outputs.Video() self.assertTrue(video_output.postprocess(y_vid)["data"].startswith("data:video/mp4;base64,")) self.assertTrue(video_output.deserialize(gr.test_data.BASE64_VIDEO["data"]).endswith(".mp4")) with tempfile.TemporaryDirectory() as tmpdirname: to_save = video_output.save_flagged(tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None) self.assertEqual("video_output/0.mp4", to_save) to_save = video_output.save_flagged(tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None) self.assertEqual("video_output/1.mp4", to_save) class TestKeyValues(unittest.TestCase): def test_as_component(self): kv_output = gr.outputs.KeyValues() kv_dict = {"a": 1, "b": 2} kv_list = [("a", 1), ("b", 2)] self.assertEqual(kv_output.postprocess(kv_dict), kv_list) self.assertEqual(kv_output.postprocess(kv_list), kv_list) with self.assertRaises(ValueError): kv_output.postprocess(0) with tempfile.TemporaryDirectory() as tmpdirname: to_save = kv_output.save_flagged(tmpdirname, "kv_output", kv_list, None) self.assertEqual(to_save, '[["a", 1], ["b", 2]]') self.assertEqual(kv_output.restore_flagged(to_save), [["a", 1], ["b", 2]]) def test_in_interface(self): def letter_distribution(word): dist = {} for letter in word: dist[letter] = dist.get(letter, 0) + 1 return dist iface = gr.Interface(letter_distribution, "text", "key_values") self.assertListEqual(iface.process(["alpaca"])[0][0], [ ("a", 3), ("l", 1), ("p", 1), ("c", 1)]) class TestHighlightedText(unittest.TestCase): def test_as_component(self): ht_output = gr.outputs.HighlightedText(color_map={"pos": "green", "neg": "red"}) self.assertEqual(ht_output.get_template_context(), { 'color_map': {'pos': 'green', 'neg': 'red'}, 'name': 'highlightedtext', 'label': None }) ht = { "pos": "Hello ", "neg": "World" } with tempfile.TemporaryDirectory() as tmpdirname: to_save = ht_output.save_flagged(tmpdirname, "ht_output", ht, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual(ht_output.restore_flagged(to_save), {"pos": "Hello ", "neg": "World"}) def test_in_interface(self): def highlight_vowels(sentence): phrases, cur_phrase = [], "" vowels, mode = "aeiou", None for letter in sentence: letter_mode = "vowel" if letter in vowels else "non" if mode is None: mode = letter_mode elif mode != letter_mode: phrases.append((cur_phrase, mode)) cur_phrase = "" mode = letter_mode cur_phrase += letter phrases.append((cur_phrase, mode)) return phrases iface = gr.Interface(highlight_vowels, "text", "highlight") self.assertListEqual(iface.process(["Helloooo"])[0][0], [ ("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")]) class TestAudio(unittest.TestCase): def test_as_component(self): y_audio = gr.processing_utils.decode_base64_to_file(gr.test_data.BASE64_AUDIO["data"]) audio_output = gr.outputs.Audio(type="file") self.assertTrue(audio_output.postprocess(y_audio.name).startswith("data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA")) self.assertEqual(audio_output.get_template_context(), { 'name': 'audio', 'label': None }) with self.assertRaises(ValueError): wrong_type = gr.outputs.Audio(type="unknown") wrong_type.postprocess(y_audio.name) self.assertTrue(audio_output.deserialize(gr.test_data.BASE64_AUDIO["data"]).endswith(".wav")) with tempfile.TemporaryDirectory() as tmpdirname: to_save = audio_output.save_flagged(tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None) self.assertEqual("audio_output/0.wav", to_save) to_save = audio_output.save_flagged(tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None) self.assertEqual("audio_output/1.wav", to_save) def test_in_interface(self): def generate_noise(duration): return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16) iface = gr.Interface(generate_noise, "slider", "audio") self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64")) class TestJSON(unittest.TestCase): def test_as_component(self): js_output = gr.outputs.JSON() self.assertTrue(js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"') js = { "pos": "Hello ", "neg": "World" } with tempfile.TemporaryDirectory() as tmpdirname: to_save = js_output.save_flagged(tmpdirname, "js_output", js, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual(js_output.restore_flagged(to_save), {"pos": "Hello ", "neg": "World"}) def test_in_interface(self): def get_avg_age_per_gender(data): return { "M": int(data[data["gender"] == "M"].mean()), "F": int(data[data["gender"] == "F"].mean()), "O": int(data[data["gender"] == "O"].mean()), } iface = gr.Interface( get_avg_age_per_gender, gr.inputs.Dataframe(headers=["gender", "age"]), "json") y_data = [ ["M", 30], ["F", 20], ["M", 40], ["O", 20], ["F", 30], ] self.assertDictEqual(iface.process([y_data])[0][0], { "M": 35, "F": 25, "O": 20 }) class TestHTML(unittest.TestCase): def test_in_interface(self): def bold_text(text): return "" + text + "" iface = gr.Interface(bold_text, "text", "html") self.assertEqual(iface.process(["test"])[0][0], "test") class TestFile(unittest.TestCase): def test_as_component(self): def write_file(content): with open("test.txt", "w") as f: f.write(content) return "test.txt" iface = gr.Interface(write_file, "text", "file") self.assertDictEqual(iface.process(["hello world"])[0][0], { 'name': 'test.txt', 'size': 11, 'data': 'aGVsbG8gd29ybGQ=' }) file_output = gr.outputs.File() with tempfile.TemporaryDirectory() as tmpdirname: to_save = file_output.save_flagged(tmpdirname, "file_output", gr.test_data.BASE64_FILE, None) self.assertEqual("file_output/0.pdf", to_save) to_save = file_output.save_flagged(tmpdirname, "file_output", gr.test_data.BASE64_FILE, None) self.assertEqual("file_output/1.pdf", to_save) class TestDataframe(unittest.TestCase): def test_as_component(self): dataframe_output = gr.outputs.Dataframe() output = dataframe_output.postprocess(np.zeros((2,2))) self.assertDictEqual(output, {"data": [[0,0],[0,0]]}) output = dataframe_output.postprocess([[1,3,5]]) self.assertDictEqual(output, {"data": [[1, 3, 5]]}) output = dataframe_output.postprocess(pd.DataFrame( [[2, True], [3, True], [4, False]], columns=["num", "prime"])) self.assertDictEqual(output, {"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]}) self.assertEqual(dataframe_output.get_template_context(), { 'headers': None, 'max_rows': 20, 'max_cols': None, 'overflow_row_behaviour': 'paginate', 'name': 'dataframe', 'label': None }) with self.assertRaises(ValueError): wrong_type = gr.outputs.Dataframe(type="unknown") wrong_type.postprocess(0) with tempfile.TemporaryDirectory() as tmpdirname: to_save = dataframe_output.save_flagged(tmpdirname, "dataframe_output", output, None) self.assertEqual(to_save, '[[2, true], [3, true], [4, false]]') self.assertEqual(dataframe_output.restore_flagged(to_save), [[2, True], [3, True], [4, False]]) def test_in_interface(self): def check_odd(array): return array % 2 == 0 iface = gr.Interface(check_odd, "numpy", "numpy") self.assertEqual( iface.process([[2, 3, 4]])[0][0], {"data": [[True, False, True]]}) class TestCarousel(unittest.TestCase): def test_as_component(self): carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease") output = carousel_output.postprocess([["Hello World", "test/test_files/bus.png"], ["Bye World", "test/test_files/bus.png"]]) self.assertEqual(output, [['Hello World', gr.test_data.BASE64_IMAGE], ['Bye World', gr.test_data.BASE64_IMAGE]]) carousel_output = gr.outputs.Carousel("text", label="Disease") output = carousel_output.postprocess([["Hello World"], ["Bye World"]]) self.assertEqual(output, [['Hello World'], ['Bye World']]) self.assertEqual(carousel_output.get_template_context(), { 'components': [{'name': 'textbox', 'label': None}], 'name': 'carousel', 'label': 'Disease' }) output = carousel_output.postprocess(["Hello World", "Bye World"]) self.assertEqual(output, [['Hello World'], ['Bye World']]) with self.assertRaises(ValueError): carousel_output.postprocess('Hello World!') with tempfile.TemporaryDirectory() as tmpdirname: to_save = carousel_output.save_flagged(tmpdirname, "carousel_output", output, None) self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]') def test_in_interface(self): carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease") def report(img): results = [] for i, mode in enumerate(["Red", "Green", "Blue"]): color_filter = np.array([0, 0, 0]) color_filter[i] = 1 results.append([mode, img * color_filter]) return results iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output) self.assertEqual( iface.process([gr.test_data.BASE64_IMAGE])[0], [[['Red', ''], ['Green', ''], ['Blue', '']]]) class TestTimeseries(unittest.TestCase): def test_as_component(self): timeseries_output = gr.outputs.Timeseries(label="Disease") self.assertEqual(timeseries_output.get_template_context(), { 'x': None, 'y': None, 'name': 'timeseries', 'label': 'Disease' }) data = {'Name': ['Tom', 'nick', 'krish', 'jack'], 'Age': [20, 21, 19, 18]} df = pd.DataFrame(data) self.assertEqual(timeseries_output.postprocess(df),{'headers': ['Name', 'Age'], 'data': [['Tom', 20], ['nick', 21], ['krish', 19], ['jack', 18]]}) timeseries_output = gr.outputs.Timeseries(y="Age", label="Disease") output = timeseries_output.postprocess(df) self.assertEqual(output, {'headers': ['Name', 'Age'], 'data': [['Tom', 20], ['nick', 21], ['krish', 19], ['jack', 18]]}) with tempfile.TemporaryDirectory() as tmpdirname: to_save = timeseries_output.save_flagged(tmpdirname, "timeseries_output", output, None) self.assertEqual(to_save, '{"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ' '["jack", 18]]}') self.assertEqual(timeseries_output.restore_flagged(to_save), {"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]]}) class TestNames(unittest.TestCase): def test_no_duplicate_uncased_names(self): # this ensures that get_input_instance() works correctly when instantiating from components subclasses = gr.outputs.OutputComponent.__subclasses__() unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses]) self.assertEqual(len(subclasses), len(unique_subclasses_uncased)) if __name__ == '__main__': unittest.main()