import os import tempfile import unittest import matplotlib.pyplot as plt import numpy as np import pandas as pd import gradio as gr os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" class OutputComponent(unittest.TestCase): def test_as_component(self): output = gr.outputs.OutputComponent(label="Test Input") self.assertEqual(output.postprocess("Hello World!"), "Hello World!") self.assertEqual(output.deserialize(1), 1) class TestTextbox(unittest.TestCase): def test_as_component(self): with self.assertRaises(ValueError): wrong_type = gr.outputs.Textbox(type="unknown") wrong_type.postprocess(0) def test_in_interface(self): iface = gr.Interface(lambda x: x[-1], "textbox", gr.outputs.Textbox()) self.assertEqual(iface.process(["Hello"])[0], ["o"]) iface = gr.Interface( lambda x: x / 2, "number", gr.outputs.Textbox(type="number") ) self.assertEqual(iface.process([10])[0], [5]) class TestLabel(unittest.TestCase): def test_as_component(self): y = "happy" label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual(label, {"label": "happy"}) self.assertEqual(label_output.deserialize(y), y) self.assertEqual(label_output.deserialize(label), y) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, y) y = {3: 0.7, 1: 0.2, 0: 0.1} label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, {"label": 0, "confidence": 0.1}, ], }, ) label_output = gr.outputs.Label(num_top_classes=2) label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, ], }, ) with self.assertRaises(ValueError): label_output.postprocess([1, 2, 3]) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, '{"3": 0.7, "1": 0.2}') self.assertEqual( label_output.restore_flagged(tmpdir, to_save, None), { "label": "3", "confidences": [ {"label": "3", "confidence": 0.7}, {"label": "1", "confidence": 0.2}, ], }, ) with self.assertRaises(ValueError): label_output = gr.outputs.Label(type="unknown") label_output.deserialize([1, 2, 3]) def test_in_interface(self): x_img = gr.test_data.BASE64_IMAGE def rgb_distribution(img): rgb_dist = np.mean(img, axis=(0, 1)) rgb_dist /= np.sum(rgb_dist) rgb_dist = np.round(rgb_dist, decimals=2) return { "red": rgb_dist[0], "green": rgb_dist[1], "blue": rgb_dist[2], } iface = gr.Interface(rgb_distribution, "image", "label") output = iface.process([x_img])[0][0] self.assertDictEqual( output, { "label": "red", "confidences": [ {"label": "red", "confidence": 0.44}, {"label": "green", "confidence": 0.28}, {"label": "blue", "confidence": 0.28}, ], }, ) class TestImage(unittest.TestCase): def test_as_component(self): y_img = gr.processing_utils.decode_base64_to_image(gr.test_data.BASE64_IMAGE) image_output = gr.outputs.Image() self.assertTrue( image_output.postprocess(y_img).startswith( "" ) ) self.assertTrue( image_output.postprocess(np.array(y_img)).startswith( "" ) ) with self.assertWarns(DeprecationWarning): plot_output = gr.outputs.Image(plot=True) xpoints = np.array([0, 6]) ypoints = np.array([0, 250]) fig = plt.figure() p = plt.plot(xpoints, ypoints) self.assertTrue( plot_output.postprocess(fig).startswith("data:image/png;base64,") ) with self.assertRaises(ValueError): image_output.postprocess([1, 2, 3]) image_output = gr.outputs.Image(type="numpy") self.assertTrue( image_output.postprocess(y_img).startswith("data:image/png;base64,") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = image_output.save_flagged( tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None ) self.assertEqual("image_output/0.png", to_save) to_save = image_output.save_flagged( tmpdirname, "image_output", gr.test_data.BASE64_IMAGE, None ) self.assertEqual("image_output/1.png", to_save) def test_in_interface(self): def generate_noise(width, height): return np.random.randint(0, 256, (width, height, 3)) iface = gr.Interface(generate_noise, ["slider", "slider"], "image") self.assertTrue( iface.process([10, 20])[0][0].startswith("data:image/png;base64") ) class TestVideo(unittest.TestCase): def test_as_component(self): y_vid = "test/test_files/video_sample.mp4" video_output = gr.outputs.Video() self.assertTrue( video_output.postprocess(y_vid)["data"].startswith("data:video/mp4;base64,") ) self.assertTrue( video_output.deserialize(gr.test_data.BASE64_VIDEO["data"]).endswith(".mp4") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = video_output.save_flagged( tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None ) self.assertEqual("video_output/0.mp4", to_save) to_save = video_output.save_flagged( tmpdirname, "video_output", gr.test_data.BASE64_VIDEO, None ) self.assertEqual("video_output/1.mp4", to_save) class TestKeyValues(unittest.TestCase): def test_as_component(self): kv_output = gr.outputs.KeyValues() kv_dict = {"a": 1, "b": 2} kv_list = [("a", 1), ("b", 2)] self.assertEqual(kv_output.postprocess(kv_dict), kv_list) self.assertEqual(kv_output.postprocess(kv_list), kv_list) with self.assertRaises(ValueError): kv_output.postprocess(0) with tempfile.TemporaryDirectory() as tmpdirname: to_save = kv_output.save_flagged(tmpdirname, "kv_output", kv_list, None) self.assertEqual(to_save, '[["a", 1], ["b", 2]]') self.assertEqual( kv_output.restore_flagged(tmpdirname, to_save, None), [["a", 1], ["b", 2]], ) def test_in_interface(self): def letter_distribution(word): dist = {} for letter in word: dist[letter] = dist.get(letter, 0) + 1 return dist iface = gr.Interface(letter_distribution, "text", "key_values") self.assertListEqual( iface.process(["alpaca"])[0][0], [("a", 3), ("l", 1), ("p", 1), ("c", 1)] ) class TestHighlightedText(unittest.TestCase): def test_as_component(self): ht_output = gr.outputs.HighlightedText(color_map={"pos": "green", "neg": "red"}) self.assertEqual( ht_output.get_template_context(), { "color_map": {"pos": "green", "neg": "red"}, "name": "highlightedtext", "label": None, "show_legend": False, }, ) ht = {"pos": "Hello ", "neg": "World"} with tempfile.TemporaryDirectory() as tmpdirname: to_save = ht_output.save_flagged(tmpdirname, "ht_output", ht, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual( ht_output.restore_flagged(tmpdirname, to_save, None), {"pos": "Hello ", "neg": "World"}, ) def test_in_interface(self): def highlight_vowels(sentence): phrases, cur_phrase = [], "" vowels, mode = "aeiou", None for letter in sentence: letter_mode = "vowel" if letter in vowels else "non" if mode is None: mode = letter_mode elif mode != letter_mode: phrases.append((cur_phrase, mode)) cur_phrase = "" mode = letter_mode cur_phrase += letter phrases.append((cur_phrase, mode)) return phrases iface = gr.Interface(highlight_vowels, "text", "highlight") self.assertListEqual( iface.process(["Helloooo"])[0][0], [("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")], ) class TestAudio(unittest.TestCase): def test_as_component(self): y_audio = gr.processing_utils.decode_base64_to_file( gr.test_data.BASE64_AUDIO["data"] ) audio_output = gr.outputs.Audio(type="file") self.assertTrue( audio_output.postprocess(y_audio.name).startswith( "data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA" ) ) self.assertEqual( audio_output.get_template_context(), {"name": "audio", "label": None} ) with self.assertRaises(ValueError): wrong_type = gr.outputs.Audio(type="unknown") wrong_type.postprocess(y_audio.name) self.assertTrue( audio_output.deserialize(gr.test_data.BASE64_AUDIO["data"]).endswith(".wav") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = audio_output.save_flagged( tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None ) self.assertEqual("audio_output/0.wav", to_save) to_save = audio_output.save_flagged( tmpdirname, "audio_output", gr.test_data.BASE64_AUDIO["data"], None ) self.assertEqual("audio_output/1.wav", to_save) def test_in_interface(self): def generate_noise(duration): return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16) iface = gr.Interface(generate_noise, "slider", "audio") self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64")) class TestJSON(unittest.TestCase): def test_as_component(self): js_output = gr.outputs.JSON() self.assertTrue( js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"' ) js = {"pos": "Hello ", "neg": "World"} with tempfile.TemporaryDirectory() as tmpdirname: to_save = js_output.save_flagged(tmpdirname, "js_output", js, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual( js_output.restore_flagged(tmpdirname, to_save, None), {"pos": "Hello ", "neg": "World"}, ) def test_in_interface(self): def get_avg_age_per_gender(data): return { "M": int(data[data["gender"] == "M"].mean()), "F": int(data[data["gender"] == "F"].mean()), "O": int(data[data["gender"] == "O"].mean()), } iface = gr.Interface( get_avg_age_per_gender, gr.inputs.Dataframe(headers=["gender", "age"]), "json", ) y_data = [ ["M", 30], ["F", 20], ["M", 40], ["O", 20], ["F", 30], ] self.assertDictEqual(iface.process([y_data])[0][0], {"M": 35, "F": 25, "O": 20}) class TestHTML(unittest.TestCase): def test_in_interface(self): def bold_text(text): return "" + text + "" iface = gr.Interface(bold_text, "text", "html") self.assertEqual(iface.process(["test"])[0][0], "test") class TestFile(unittest.TestCase): def test_as_component(self): def write_file(content): with open("test.txt", "w") as f: f.write(content) return "test.txt" iface = gr.Interface(write_file, "text", "file") self.assertDictEqual( iface.process(["hello world"])[0][0], { "name": "test.txt", "size": 11, "data": "data:text/plain;base64,aGVsbG8gd29ybGQ=", }, ) file_output = gr.outputs.File() with tempfile.TemporaryDirectory() as tmpdirname: to_save = file_output.save_flagged( tmpdirname, "file_output", gr.test_data.BASE64_FILE, None ) self.assertEqual("file_output/0", to_save) to_save = file_output.save_flagged( tmpdirname, "file_output", gr.test_data.BASE64_FILE, None ) self.assertEqual("file_output/1", to_save) class TestDataframe(unittest.TestCase): def test_as_component(self): dataframe_output = gr.outputs.Dataframe() output = dataframe_output.postprocess(np.zeros((2, 2))) self.assertDictEqual(output, {"data": [[0, 0], [0, 0]]}) output = dataframe_output.postprocess([[1, 3, 5]]) self.assertDictEqual(output, {"data": [[1, 3, 5]]}) output = dataframe_output.postprocess( pd.DataFrame([[2, True], [3, True], [4, False]], columns=["num", "prime"]) ) self.assertDictEqual( output, {"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]}, ) self.assertEqual( dataframe_output.get_template_context(), { "headers": None, "max_rows": 20, "max_cols": None, "overflow_row_behaviour": "paginate", "name": "dataframe", "label": None, }, ) with self.assertRaises(ValueError): wrong_type = gr.outputs.Dataframe(type="unknown") wrong_type.postprocess(0) with tempfile.TemporaryDirectory() as tmpdirname: to_save = dataframe_output.save_flagged( tmpdirname, "dataframe_output", output, None ) self.assertEqual(to_save, "[[2, true], [3, true], [4, false]]") self.assertEqual( dataframe_output.restore_flagged(tmpdirname, to_save, None), {"data": [[2, True], [3, True], [4, False]]}, ) def test_in_interface(self): def check_odd(array): return array % 2 == 0 iface = gr.Interface(check_odd, "numpy", "numpy") self.assertEqual( iface.process([[2, 3, 4]])[0][0], {"data": [[True, False, True]]} ) class TestCarousel(unittest.TestCase): def test_as_component(self): carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease") output = carousel_output.postprocess( [ ["Hello World", "test/test_files/bus.png"], ["Bye World", "test/test_files/bus.png"], ] ) self.assertEqual( output, [ ["Hello World", gr.test_data.BASE64_IMAGE], ["Bye World", gr.test_data.BASE64_IMAGE], ], ) carousel_output = gr.outputs.Carousel("text", label="Disease") output = carousel_output.postprocess([["Hello World"], ["Bye World"]]) self.assertEqual(output, [["Hello World"], ["Bye World"]]) self.assertEqual( carousel_output.get_template_context(), { "components": [{"name": "textbox", "label": None}], "name": "carousel", "label": "Disease", }, ) output = carousel_output.postprocess(["Hello World", "Bye World"]) self.assertEqual(output, [["Hello World"], ["Bye World"]]) with self.assertRaises(ValueError): carousel_output.postprocess("Hello World!") with tempfile.TemporaryDirectory() as tmpdirname: to_save = carousel_output.save_flagged( tmpdirname, "carousel_output", output, None ) self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]') def test_in_interface(self): carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease") def report(img): results = [] for i, mode in enumerate(["Red", "Green", "Blue"]): color_filter = np.array([0, 0, 0]) color_filter[i] = 1 results.append([mode, img * color_filter]) return results iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output) self.assertEqual( iface.process([gr.test_data.BASE64_IMAGE])[0], [ [ [ "Red", "", ], [ "Green", "", ], [ "Blue", "", ], ] ], ) class TestTimeseries(unittest.TestCase): def test_as_component(self): timeseries_output = gr.outputs.Timeseries(label="Disease") self.assertEqual( timeseries_output.get_template_context(), {"x": None, "y": None, "name": "timeseries", "label": "Disease"}, ) data = {"Name": ["Tom", "nick", "krish", "jack"], "Age": [20, 21, 19, 18]} df = pd.DataFrame(data) self.assertEqual( timeseries_output.postprocess(df), { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) timeseries_output = gr.outputs.Timeseries(y="Age", label="Disease") output = timeseries_output.postprocess(df) self.assertEqual( output, { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = timeseries_output.save_flagged( tmpdirname, "timeseries_output", output, None ) self.assertEqual( to_save, '{"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ' '["jack", 18]]}', ) self.assertEqual( timeseries_output.restore_flagged(tmpdirname, to_save, None), { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) class TestNames(unittest.TestCase): def test_no_duplicate_uncased_names( self, ): # this ensures that get_input_instance() works correctly when instantiating from components subclasses = gr.outputs.OutputComponent.__subclasses__() unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses]) self.assertEqual(len(subclasses), len(unique_subclasses_uncased)) if __name__ == "__main__": unittest.main()