# Demo: (Dropdown, Checkbox, Slider, CheckboxGroup, Number, Radio) -> (Label) import pandas as pd import numpy as np import sklearn import gradio as gr from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score import os current_dir = os.path.dirname(os.path.realpath(__file__)) data = pd.read_csv(os.path.join(current_dir, 'files/titanic.csv')) def encode_age(df): df.Age = df.Age.fillna(-0.5) bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120) categories = pd.cut(df.Age, bins, labels=False) df.Age = categories return df def encode_fare(df): df.Fare = df.Fare.fillna(-0.5) bins = (-1, 0, 8, 15, 31, 1000) categories = pd.cut(df.Fare, bins, labels=False) df.Fare = categories return df def encode_df(df): df = encode_age(df) df = encode_fare(df) sex_mapping = {"male": 0, "female": 1} df = df.replace({'Sex': sex_mapping}) embark_mapping = {"S": 1, "C": 2, "Q": 3} df = df.replace({'Embarked': embark_mapping}) df.Embarked = df.Embarked.fillna(0) df["Company"] = 0 df.loc[(df["SibSp"] > 0), "Company"] = 1 df.loc[(df["Parch"] > 0), "Company"] = 2 df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3 df = df[["PassengerId", "Pclass", "Sex", "Age", "Fare", "Embarked", "Company", "Survived"]] return df train = encode_df(data) X_all = train.drop(['Survived', 'PassengerId'], axis=1) y_all = train['Survived'] num_test = 0.20 X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size=num_test, random_state=23) clf = RandomForestClassifier() clf.fit(X_train, y_train) predictions = clf.predict(X_test) def predict_survival(passenger_class, is_male, age, company, fare, embark_point): df = pd.DataFrame.from_dict({ 'Pclass': [passenger_class + 1], 'Sex': [0 if is_male else 1], 'Age': [age], 'Company': [(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)], 'Fare': [fare], 'Embarked': [embark_point + 1] }) df = encode_age(df) df = encode_fare(df) pred = clf.predict_proba(df)[0] return {'Perishes': pred[0], 'Survives': pred[1]} iface = gr.Interface( predict_survival, [ gr.inputs.Dropdown(["first", "second", "third"], type="index"), "checkbox", gr.inputs.Slider(0, 80), gr.inputs.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"), gr.inputs.Number().interpret(delta_type="absolute", delta=5), gr.inputs.Radio(["S", "C", "Q"], type="index"), ], "label", examples=[ ["first", True, 30, [], 50, "S"], ["second", False, 40, ["Sibling", "Child"], 10, "Q"], ["third", True, 30, ["Child"], 20, "S"], ], interpretation="default", ) if __name__ == "__main__": iface.launch()