import gradio as gr import torch import torchaudio from timeit import default_timer as timer from data_setups import audio_preprocess, resample import gdown url = 'https://drive.google.com/uc?id=1X5CR18u0I-ZOi_8P0cNptCe5JGk9Ro0C' output = 'piano.wav' gdown.download(url, output, quiet=False) url = 'https://drive.google.com/uc?id=1W-8HwmGR5SiyDbUcGAZYYDKdCIst07__' output= 'torch_efficientnet_fold2_CNN.pth' gdown.download(url, output, quiet=False) device = "cuda" if torch.cuda.is_available() else "cpu" SAMPLE_RATE = 44100 AUDIO_LEN = 2.90 model = torch.load("torch_efficientnet_fold2_CNN.pth", map_location=torch.device('cpu')) LABELS = [ "Cello", "Clarinet", "Flute", "Acoustic Guitar", "Electric Guitar", "Organ", "Piano", "Saxophone", "Trumpet", "Violin", "Voice" ] example_list = [ ["piano.wav"] ] def predict(audio_path): start_time = timer() wavform, sample_rate = torchaudio.load(audio_path) wav = resample(wavform, sample_rate, SAMPLE_RATE) if len(wav) > int(AUDIO_LEN * SAMPLE_RATE): wav = wav[:int(AUDIO_LEN * SAMPLE_RATE)] else: print(f"input length {len(wav)} too small!, need over {int(AUDIO_LEN * SAMPLE_RATE)}") return img = audio_preprocess(wav, SAMPLE_RATE).unsqueeze(0) model.eval() with torch.inference_mode(): pred_probs = torch.softmax(model(img), dim=1) pred_labels_and_probs = {LABELS[i]: float(pred_probs[0][i]) for i in range(len(LABELS))} pred_time = round(timer() - start_time, 5) return pred_labels_and_probs, pred_time demo = gr.Interface(fn=predict, inputs=gr.Audio(type="filepath"), outputs=[gr.Label(num_top_classes=11, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, cache_examples=False ) demo.launch(debug=False)