import os import unittest import numpy as np import gradio.interpretation import gradio.test_data from gradio import Interface from gradio.processing_utils import decode_base64_to_image os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" class TestDefault(unittest.TestCase): def test_default_text(self): max_word_len = lambda text: max([len(word) for word in text.split(" ")]) text_interface = Interface( max_word_len, "textbox", "label", interpretation="default" ) interpretation = text_interface.interpret(["quickest brown fox"])[0][0] self.assertGreater( interpretation[0][1], 0 ) # Checks to see if the first word has >0 score. self.assertEqual( interpretation[-1][1], 0 ) # Checks to see if the last word has 0 score. class TestShapley(unittest.TestCase): def test_shapley_text(self): max_word_len = lambda text: max([len(word) for word in text.split(" ")]) text_interface = Interface( max_word_len, "textbox", "label", interpretation="shapley" ) interpretation = text_interface.interpret(["quickest brown fox"])[0][0] self.assertGreater( interpretation[0][1], 0 ) # Checks to see if the first word has >0 score. self.assertEqual( interpretation[-1][1], 0 ) # Checks to see if the last word has 0 score. class TestCustom(unittest.TestCase): def test_custom_text(self): max_word_len = lambda text: max([len(word) for word in text.split(" ")]) custom = lambda text: [(char, 1) for char in text] text_interface = Interface( max_word_len, "textbox", "label", interpretation=custom ) result = text_interface.interpret(["quickest brown fox"])[0][0] self.assertEqual( result[0][1], 1 ) # Checks to see if the first letter has score of 1. def test_custom_img(self): max_pixel_value = lambda img: img.max() custom = lambda img: img.tolist() img_interface = Interface( max_pixel_value, "image", "label", interpretation=custom ) result = img_interface.interpret([gradio.test_data.BASE64_IMAGE])[0][0] expected_result = np.asarray( decode_base64_to_image(gradio.test_data.BASE64_IMAGE).convert("RGB") ).tolist() self.assertEqual(result, expected_result) class TestHelperMethods(unittest.TestCase): def test_diff(self): diff = gradio.interpretation.diff(13, "2") self.assertEquals(diff, 11) diff = gradio.interpretation.diff("cat", "dog") self.assertEquals(diff, 1) diff = gradio.interpretation.diff("cat", "cat") self.assertEquals(diff, 0) def test_quantify_difference_with_number(self): iface = Interface(lambda text: text, ["textbox"], ["number"]) diff = gradio.interpretation.quantify_difference_in_label(iface, [4], [6]) self.assertEquals(diff, -2) def test_quantify_difference_with_label(self): iface = Interface(lambda text: len(text), ["textbox"], ["label"]) diff = gradio.interpretation.quantify_difference_in_label(iface, ["3"], ["10"]) self.assertEquals(diff, -7) diff = gradio.interpretation.quantify_difference_in_label(iface, ["0"], ["100"]) self.assertEquals(diff, -100) def test_quantify_difference_with_confidences(self): iface = Interface(lambda text: len(text), ["textbox"], ["label"]) output_1 = {"cat": 0.9, "dog": 0.1} output_2 = {"cat": 0.6, "dog": 0.4} output_3 = {"cat": 0.1, "dog": 0.6} diff = gradio.interpretation.quantify_difference_in_label( iface, [output_1], [output_2] ) self.assertAlmostEquals(diff, 0.3) diff = gradio.interpretation.quantify_difference_in_label( iface, [output_1], [output_3] ) self.assertAlmostEquals(diff, 0.8) def test_get_regression_value(self): iface = Interface(lambda text: text, ["textbox"], ["label"]) output_1 = {"cat": 0.9, "dog": 0.1} output_2 = {"cat": float("nan"), "dog": 0.4} output_3 = {"cat": 0.1, "dog": 0.6} diff = gradio.interpretation.get_regression_or_classification_value( iface, [output_1], [output_2] ) self.assertEquals(diff, 0) diff = gradio.interpretation.get_regression_or_classification_value( iface, [output_1], [output_3] ) self.assertAlmostEquals(diff, 0.1) def test_get_classification_value(self): iface = Interface(lambda text: text, ["textbox"], ["label"]) diff = gradio.interpretation.get_regression_or_classification_value( iface, ["cat"], ["test"] ) self.assertEquals(diff, 1) diff = gradio.interpretation.get_regression_or_classification_value( iface, ["test"], ["test"] ) self.assertEquals(diff, 0) if __name__ == "__main__": unittest.main()