import unittest import os from gradio import inputs BASE64_IMG = "" RAND_STRING = "2wBDAAYEBQYFBAYGBQYHBwYIC" PACKAGE_NAME = 'gradio' class TestSketchpad(unittest.TestCase): def test_path_exists(self): inp = inputs.Sketchpad() path = inp._get_template_path() self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.Sketchpad() array = inp._pre_process(BASE64_IMG) self.assertEqual(array.shape, (1, 28, 28, 1)) class TestWebcam(unittest.TestCase): def test_path_exists(self): inp = inputs.Webcam() path = inp._get_template_path() self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.Webcam() array = inp._pre_process(BASE64_IMG) self.assertEqual(array.shape, (1, 48, 48, 1)) class TestTextbox(unittest.TestCase): def test_path_exists(self): inp = inputs.Textbox() path = inp._get_template_path() self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.Textbox() string = inp._pre_process(RAND_STRING) self.assertEqual(string, RAND_STRING) class TestImageUpload(unittest.TestCase): def test_path_exists(self): inp = inputs.ImageUpload() path = inp._get_template_path() self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.ImageUpload() array = inp._pre_process(BASE64_IMG) self.assertEqual(array.shape, (1, 48, 48, 1)) if __name__ == '__main__': unittest.main()