import unittest import os from gradio import inputs BASE64_IMG = "" BASE64_SKETCH = "" RAND_STRING = "2wBDAAYEBQYFBAYGBQYHBwYIC" PACKAGE_NAME = 'gradio' class TestSketchpad(unittest.TestCase): def test_path_exists(self): inp = inputs.Sketchpad() path = inputs.BASE_INPUT_INTERFACE_JS_PATH.format(inp.get_name()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.Sketchpad() array = inp.preprocess(BASE64_SKETCH) self.assertEqual(array.shape, (1, 28, 28)) class TestWebcam(unittest.TestCase): def test_path_exists(self): inp = inputs.Webcam() path = inputs.BASE_INPUT_INTERFACE_JS_PATH.format(inp.get_name()) self.assertFalse(os.path.exists(os.path.join(PACKAGE_NAME, path))) # Note implemented yet. def test_preprocessing(self): inp = inputs.Webcam() array = inp.preprocess(BASE64_IMG) self.assertEqual(array.shape, (1, 224, 224, 3)) class TestTextbox(unittest.TestCase): def test_path_exists(self): inp = inputs.Textbox() path = inputs.BASE_INPUT_INTERFACE_JS_PATH.format(inp.get_name()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.Textbox() string = inp.preprocess(RAND_STRING) self.assertEqual(string, RAND_STRING) class TestImageUpload(unittest.TestCase): def test_path_exists(self): inp = inputs.ImageUpload() path = inputs.BASE_INPUT_INTERFACE_JS_PATH.format(inp.get_name()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_preprocessing(self): inp = inputs.ImageUpload() array = inp.preprocess(BASE64_IMG) self.assertEqual(array.shape, (1, 224, 224, 3)) def test_preprocessing(self): inp = inputs.ImageUpload() inp.image_height = 48 inp.image_width = 48 array = inp.preprocess(BASE64_IMG) self.assertEqual(array.shape, (1, 48, 48, 3)) if __name__ == '__main__': unittest.main()