import json import os import tempfile import unittest from copy import deepcopy from difflib import SequenceMatcher from test.test_data import media_data import matplotlib.pyplot as plt import numpy as np import pandas as pd import PIL import gradio as gr os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" """ Tests are divided into two 1. test_component_functionalities are unit tests that check essential functions of a component, the functions that are checked are documented in the docstring. 2. test_in_interface_... are functional tests that check a component's functionalities inside an Interface. Please do not use Interface.launch() in this file, as it slow downs the tests. """ class TestTextbox(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, serialize, save_flagged, restore_flagged, tokenize, generate_sample, get_template_context """ text_input = gr.Textbox() self.assertEqual(text_input.preprocess("Hello World!"), "Hello World!") self.assertEqual(text_input.preprocess_example("Hello World!"), "Hello World!") self.assertEqual(text_input.postprocess(None), None) self.assertEqual(text_input.postprocess("Ali"), "Ali") self.assertEqual(text_input.postprocess(2), "2") self.assertEqual(text_input.postprocess(2.14), "2.14") self.assertEqual(text_input.serialize("Hello World!", True), "Hello World!") with tempfile.TemporaryDirectory() as tmpdirname: to_save = text_input.save_flagged( tmpdirname, "text_input", "Hello World!", None ) self.assertEqual(to_save, "Hello World!") restored = text_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "Hello World!") with self.assertWarns(DeprecationWarning): _ = gr.Textbox(type="number") self.assertEqual( text_input.tokenize("Hello World! Gradio speaking."), ( ["Hello", "World!", "Gradio", "speaking."], [ "World! Gradio speaking.", "Hello Gradio speaking.", "Hello World! speaking.", "Hello World! Gradio", ], None, ), ) text_input.interpretation_replacement = "unknown" self.assertEqual( text_input.tokenize("Hello World! Gradio speaking."), ( ["Hello", "World!", "Gradio", "speaking."], [ "unknown World! Gradio speaking.", "Hello unknown Gradio speaking.", "Hello World! unknown speaking.", "Hello World! Gradio unknown", ], None, ), ) self.assertEqual( text_input.get_template_context(), { "lines": 1, "placeholder": None, "default_value": "", "name": "textbox", "label": None, "css": {}, }, ) self.assertIsInstance(text_input.generate_sample(), str) def test_in_interface_as_input(self): """ Interface, process, interpret, """ iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox") self.assertEqual(iface.process(["Hello"])[0], ["olleH"]) iface = gr.Interface( lambda sentence: max([len(word) for word in sentence.split()]), gr.Textbox(), "number", interpretation="default", ) scores, alternative_outputs = iface.interpret( ["Return the length of the longest word in this sentence"] ) self.assertEqual( scores, [ [ ("Return", 0.0), (" ", 0), ("the", 0.0), (" ", 0), ("length", 0.0), (" ", 0), ("of", 0.0), (" ", 0), ("the", 0.0), (" ", 0), ("longest", 0.0), (" ", 0), ("word", 0.0), (" ", 0), ("in", 0.0), (" ", 0), ("this", 0.0), (" ", 0), ("sentence", 1.0), (" ", 0), ] ], ) self.assertEqual( alternative_outputs, [[[8], [8], [8], [8], [8], [8], [8], [8], [8], [7]]], ) def test_in_interface_as_output(self): """ Interface, process """ iface = gr.Interface(lambda x: x[-1], "textbox", gr.Textbox()) self.assertEqual(iface.process(["Hello"])[0], ["o"]) iface = gr.Interface(lambda x: x / 2, "number", gr.Textbox()) self.assertEqual(iface.process([10])[0], ["5.0"]) class TestNumber(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, set_interpret_parameters, get_interpretation_neighbors, get_template_context """ numeric_input = gr.Number() self.assertEqual(numeric_input.preprocess(3), 3.0) self.assertEqual(numeric_input.preprocess(None), None) self.assertEqual(numeric_input.preprocess_example(3), 3) self.assertEqual(numeric_input.postprocess(3), 3.0) self.assertEqual(numeric_input.postprocess(2.14), 2.14) self.assertEqual(numeric_input.postprocess(None), None) self.assertEqual(numeric_input.serialize(3, True), 3) with tempfile.TemporaryDirectory() as tmpdirname: to_save = numeric_input.save_flagged(tmpdirname, "numeric_input", 3, None) self.assertEqual(to_save, 3) restored = numeric_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, 3) self.assertIsInstance(numeric_input.generate_sample(), float) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute") self.assertEqual( numeric_input.get_interpretation_neighbors(1), ([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}), ) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent") self.assertEqual( numeric_input.get_interpretation_neighbors(1), ([0.97, 0.98, 0.99, 1.01, 1.02, 1.03], {}), ) self.assertEqual( numeric_input.get_template_context(), {"default_value": None, "name": "number", "label": None, "css": {}}, ) def test_in_interface_as_input(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: x**2, "number", "textbox") self.assertEqual(iface.process([2])[0], ["4.0"]) iface = gr.Interface( lambda x: x**2, "number", "number", interpretation="default" ) scores, alternative_outputs = iface.interpret([2]) self.assertEqual( scores, [ [ (1.94, -0.23640000000000017), (1.96, -0.15840000000000032), (1.98, -0.07960000000000012), [2, None], (2.02, 0.08040000000000003), (2.04, 0.16159999999999997), (2.06, 0.24359999999999982), ] ], ) self.assertEqual( alternative_outputs, [ [ [3.7636], [3.8415999999999997], [3.9204], [4.0804], [4.1616], [4.2436], ] ], ) def test_in_interface_as_output(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: int(x) ** 2, "textbox", "number") self.assertEqual(iface.process([2])[0], [4.0]) iface = gr.Interface( lambda x: x**2, "number", "number", interpretation="default" ) scores, alternative_outputs = iface.interpret([2]) self.assertEqual( scores, [ [ (1.94, -0.23640000000000017), (1.96, -0.15840000000000032), (1.98, -0.07960000000000012), [2, None], (2.02, 0.08040000000000003), (2.04, 0.16159999999999997), (2.06, 0.24359999999999982), ] ], ) self.assertEqual( alternative_outputs, [ [ [3.7636], [3.8415999999999997], [3.9204], [4.0804], [4.1616], [4.2436], ] ], ) class TestSlider(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context """ slider_input = gr.Slider() self.assertEqual(slider_input.preprocess(3.0), 3.0) self.assertEqual(slider_input.preprocess_example(3), 3) self.assertEqual(slider_input.postprocess(3), 3) self.assertEqual(slider_input.postprocess(None), None) self.assertEqual(slider_input.serialize(3, True), 3) with tempfile.TemporaryDirectory() as tmpdirname: to_save = slider_input.save_flagged(tmpdirname, "slider_input", 3, None) self.assertEqual(to_save, 3) restored = slider_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, 3) self.assertIsInstance(slider_input.generate_sample(), int) slider_input = gr.Slider( default_value=15, minimum=10, maximum=20, step=1, label="Slide Your Input" ) self.assertEqual( slider_input.get_template_context(), { "minimum": 10, "maximum": 20, "step": 1, "default_value": 15, "name": "slider", "label": "Slide Your Input", "css": {}, }, ) def test_in_interface(self): """ " Interface, process, interpret """ iface = gr.Interface(lambda x: x**2, "slider", "textbox") self.assertEqual(iface.process([2])[0], ["4"]) iface = gr.Interface( lambda x: x**2, "slider", "number", interpretation="default" ) scores, alternative_outputs = iface.interpret([2]) self.assertEqual( scores, [ [ -4.0, 200.08163265306123, 812.3265306122449, 1832.7346938775513, 3261.3061224489797, 5098.040816326531, 7342.938775510205, 9996.0, ] ], ) self.assertEqual( alternative_outputs, [ [ [0.0], [204.08163265306123], [816.3265306122449], [1836.7346938775513], [3265.3061224489797], [5102.040816326531], [7346.938775510205], [10000.0], ] ], ) class TestCheckbox(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, serialize, generate_sample, get_template_context """ bool_input = gr.Checkbox() self.assertEqual(bool_input.preprocess(True), True) self.assertEqual(bool_input.preprocess_example(True), True) self.assertEqual(bool_input.postprocess(True), True) self.assertEqual(bool_input.serialize(True, True), True) with tempfile.TemporaryDirectory() as tmpdirname: to_save = bool_input.save_flagged(tmpdirname, "bool_input", True, None) self.assertEqual(to_save, True) restored = bool_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, True) self.assertIsInstance(bool_input.generate_sample(), bool) bool_input = gr.Checkbox(default_value=True, label="Check Your Input") self.assertEqual( bool_input.get_template_context(), { "default_value": True, "name": "checkbox", "label": "Check Your Input", "css": {}, }, ) def test_in_interface(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "number") self.assertEqual(iface.process([True])[0], [1]) iface = gr.Interface( lambda x: 1 if x else 0, "checkbox", "number", interpretation="default" ) scores, alternative_outputs = iface.interpret([False]) self.assertEqual(scores, [(None, 1.0)]) self.assertEqual(alternative_outputs, [[[1]]]) scores, alternative_outputs = iface.interpret([True]) self.assertEqual(scores, [(-1.0, None)]) self.assertEqual(alternative_outputs, [[[0]]]) class TestCheckboxGroup(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, preprocess_example, serialize, save_flagged, restore_flagged, generate_sample, get_template_context """ checkboxes_input = gr.CheckboxGroup(["a", "b", "c"]) self.assertEqual(checkboxes_input.preprocess(["a", "c"]), ["a", "c"]) self.assertEqual(checkboxes_input.preprocess_example(["a", "c"]), ["a", "c"]) self.assertEqual(checkboxes_input.serialize(["a", "c"], True), ["a", "c"]) with tempfile.TemporaryDirectory() as tmpdirname: to_save = checkboxes_input.save_flagged( tmpdirname, "checkboxes_input", ["a", "c"], None ) self.assertEqual(to_save, '["a", "c"]') restored = checkboxes_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, ["a", "c"]) self.assertIsInstance(checkboxes_input.generate_sample(), list) checkboxes_input = gr.CheckboxGroup( default_selected=["a", "c"], choices=["a", "b", "c"], label="Check Your Inputs", ) self.assertEqual( checkboxes_input.get_template_context(), { "choices": ["a", "b", "c"], "default_value": ["a", "c"], "name": "checkboxgroup", "label": "Check Your Inputs", "css": {}, }, ) with self.assertRaises(ValueError): wrong_type = gr.CheckboxGroup(["a"], type="unknown") wrong_type.preprocess(0) def test_in_interface(self): """ Interface, process """ checkboxes_input = gr.CheckboxGroup(["a", "b", "c"]) iface = gr.Interface(lambda x: "|".join(x), checkboxes_input, "textbox") self.assertEqual(iface.process([["a", "c"]])[0], ["a|c"]) self.assertEqual(iface.process([[]])[0], [""]) _ = gr.CheckboxGroup(["a", "b", "c"], type="index") class TestRadio(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, preprocess_example, serialize, save_flagged, generate_sample, get_template_context """ radio_input = gr.Radio(["a", "b", "c"]) self.assertEqual(radio_input.preprocess("c"), "c") self.assertEqual(radio_input.preprocess_example("a"), "a") self.assertEqual(radio_input.serialize("a", True), "a") with tempfile.TemporaryDirectory() as tmpdirname: to_save = radio_input.save_flagged(tmpdirname, "radio_input", "a", None) self.assertEqual(to_save, "a") restored = radio_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "a") self.assertIsInstance(radio_input.generate_sample(), str) radio_input = gr.Radio( choices=["a", "b", "c"], default="a", label="Pick Your One Input" ) self.assertEqual( radio_input.get_template_context(), { "choices": ["a", "b", "c"], "default_value": "a", "name": "radio", "label": "Pick Your One Input", "css": {}, }, ) with self.assertRaises(ValueError): wrong_type = gr.Radio(["a", "b"], type="unknown") wrong_type.preprocess(0) def test_in_interface(self): """ Interface, process, interpret """ radio_input = gr.Radio(["a", "b", "c"]) iface = gr.Interface(lambda x: 2 * x, radio_input, "textbox") self.assertEqual(iface.process(["c"])[0], ["cc"]) radio_input = gr.Radio(["a", "b", "c"], type="index") iface = gr.Interface( lambda x: 2 * x, radio_input, "number", interpretation="default" ) self.assertEqual(iface.process(["c"])[0], [4]) scores, alternative_outputs = iface.interpret(["b"]) self.assertEqual(scores, [[-2.0, None, 2.0]]) self.assertEqual(alternative_outputs, [[[0], [4]]]) class TestImage(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context, _segment_by_slic type: pil, file, filepath, numpy """ img = deepcopy(media_data.BASE64_IMAGE) image_input = gr.Image() self.assertEqual(image_input.preprocess(img).shape, (68, 61, 3)) image_input = gr.Image(shape=(25, 25), image_mode="L") self.assertEqual(image_input.preprocess(img).shape, (25, 25)) image_input = gr.Image(shape=(30, 10), type="pil") self.assertEqual(image_input.preprocess(img).size, (30, 10)) self.assertEqual(image_input.preprocess_example("test/test_files/bus.png"), img) self.assertEqual(image_input.serialize("test/test_files/bus.png", True), img) with tempfile.TemporaryDirectory() as tmpdirname: to_save = image_input.save_flagged(tmpdirname, "image_input", img, None) self.assertEqual("image_input/0.png", to_save) to_save = image_input.save_flagged(tmpdirname, "image_input", img, None) self.assertEqual("image_input/1.png", to_save) restored = image_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "image_input/1.png") self.assertIsInstance(image_input.generate_sample(), str) image_input = gr.Image( source="upload", tool="editor", type="pil", label="Upload Your Image" ) self.assertEqual( image_input.get_template_context(), { "image_mode": "RGB", "shape": None, "source": "upload", "tool": "editor", "name": "image", "label": "Upload Your Image", "css": {}, "default_value": None, }, ) self.assertIsNone(image_input.preprocess(None)) image_input = gr.Image(invert_colors=True) self.assertIsNotNone(image_input.preprocess(img)) image_input.preprocess(img) with self.assertWarns(DeprecationWarning): file_image = gr.Image(type="file") file_image.preprocess(deepcopy(media_data.BASE64_IMAGE)) file_image = gr.Image(type="filepath") self.assertIsInstance(file_image.preprocess(img), str) with self.assertRaises(ValueError): wrong_type = gr.Image(type="unknown") wrong_type.preprocess(img) with self.assertRaises(ValueError): wrong_type = gr.Image(type="unknown") wrong_type.serialize("test/test_files/bus.png", False) img_pil = PIL.Image.open("test/test_files/bus.png") image_input = gr.Image(type="numpy") self.assertIsInstance(image_input.serialize(img_pil, False), str) image_input = gr.Image(type="pil") self.assertIsInstance(image_input.serialize(img_pil, False), str) image_input = gr.Image(type="file") with open("test/test_files/bus.png") as f: self.assertEqual(image_input.serialize(f, False), img) image_input.shape = (30, 10) self.assertIsNotNone(image_input._segment_by_slic(img)) # Output functionalities y_img = gr.processing_utils.decode_base64_to_image( deepcopy(media_data.BASE64_IMAGE) ) image_output = gr.Image() self.assertTrue( image_output.postprocess(y_img).startswith( "" ) ) self.assertTrue( image_output.postprocess(np.array(y_img)).startswith( "" ) ) with self.assertWarns(DeprecationWarning): plot_output = gr.Image(plot=True) xpoints = np.array([0, 6]) ypoints = np.array([0, 250]) fig = plt.figure() plt.plot(xpoints, ypoints) self.assertTrue( plot_output.postprocess(fig).startswith("data:image/png;base64,") ) with self.assertRaises(ValueError): image_output.postprocess([1, 2, 3]) image_output = gr.Image(type="numpy") self.assertTrue( image_output.postprocess(y_img).startswith("data:image/png;base64,") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = image_output.save_flagged( tmpdirname, "image_output", deepcopy(media_data.BASE64_IMAGE), None ) self.assertEqual("image_output/0.png", to_save) to_save = image_output.save_flagged( tmpdirname, "image_output", deepcopy(media_data.BASE64_IMAGE), None ) self.assertEqual("image_output/1.png", to_save) def test_in_interface_as_input(self): """ Interface, process, interpret type: file interpretation: default, shap, """ img = deepcopy(media_data.BASE64_IMAGE) image_input = gr.Image() iface = gr.Interface( lambda x: PIL.Image.open(x).rotate(90, expand=True), gr.Image(shape=(30, 10), type="file"), "image", ) output = iface.process([img])[0][0] self.assertEqual( gr.processing_utils.decode_base64_to_image(output).size, (10, 30) ) iface = gr.Interface( lambda x: np.sum(x), image_input, "number", interpretation="default" ) scores, alternative_outputs = iface.interpret([img]) self.assertEqual( scores, deepcopy(media_data.SUM_PIXELS_INTERPRETATION)["scores"] ) self.assertEqual( alternative_outputs, deepcopy(media_data.SUM_PIXELS_INTERPRETATION)["alternative_outputs"], ) iface = gr.Interface( lambda x: np.sum(x), image_input, "label", interpretation="shap" ) scores, alternative_outputs = iface.interpret([img]) self.assertEqual( len(scores[0]), len(deepcopy(media_data.SUM_PIXELS_SHAP_INTERPRETATION)["scores"][0]), ) self.assertEqual( len(alternative_outputs[0]), len( deepcopy(media_data.SUM_PIXELS_SHAP_INTERPRETATION)[ "alternative_outputs" ][0] ), ) image_input = gr.Image(shape=(30, 10)) iface = gr.Interface( lambda x: np.sum(x), image_input, "number", interpretation="default" ) self.assertIsNotNone(iface.interpret([img])) def test_in_interface_as_output(self): """ Interface, process """ def generate_noise(width, height): return np.random.randint(0, 256, (width, height, 3)) iface = gr.Interface(generate_noise, ["slider", "slider"], "image") self.assertTrue( iface.process([10, 20])[0][0].startswith("data:image/png;base64") ) class TestAudio(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess serialize, save_flagged, restore_flagged, generate_sample, get_template_context, deserialize type: filepath, numpy, file """ x_wav = deepcopy(media_data.BASE64_AUDIO) audio_input = gr.Audio() output = audio_input.preprocess(x_wav) self.assertEqual(output[0], 8000) self.assertEqual(output[1].shape, (8046,)) self.assertEqual( audio_input.serialize("test/test_files/audio_sample.wav", True)["data"], x_wav["data"], ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None) self.assertEqual("audio_input/0.wav", to_save) to_save = audio_input.save_flagged(tmpdirname, "audio_input", x_wav, None) self.assertEqual("audio_input/1.wav", to_save) restored = audio_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "audio_input/1.wav") self.assertIsInstance(audio_input.generate_sample(), dict) audio_input = gr.Audio(label="Upload Your Audio") self.assertEqual( audio_input.get_template_context(), { "source": "upload", "name": "audio", "label": "Upload Your Audio", "css": {}, "default_value": None, }, ) self.assertIsNone(audio_input.preprocess(None)) x_wav["is_example"] = True x_wav["crop_min"], x_wav["crop_max"] = 1, 4 self.assertIsNotNone(audio_input.preprocess(x_wav)) with self.assertWarns(DeprecationWarning): audio_input = gr.Audio(type="file") audio_input.preprocess(x_wav) with open("test/test_files/audio_sample.wav") as f: audio_input.serialize(f, False) audio_input = gr.Audio(type="filepath") self.assertIsInstance(audio_input.preprocess(x_wav), str) with self.assertRaises(ValueError): audio_input = gr.Audio(type="unknown") audio_input.preprocess(x_wav) audio_input.serialize(x_wav, False) audio_input = gr.Audio(type="numpy") x_wav = gr.processing_utils.audio_from_file("test/test_files/audio_sample.wav") self.assertIsInstance(audio_input.serialize(x_wav, False), dict) # Output functionalities y_audio = gr.processing_utils.decode_base64_to_file( deepcopy(media_data.BASE64_AUDIO)["data"] ) audio_output = gr.Audio(type="file") self.assertTrue( audio_output.postprocess(y_audio.name).startswith( "data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA" ) ) self.assertEqual( audio_output.get_template_context(), { "name": "audio", "label": None, "source": "upload", "css": {}, "default_value": None, }, ) self.assertTrue( audio_output.deserialize( deepcopy(media_data.BASE64_AUDIO)["data"] ).endswith(".wav") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = audio_output.save_flagged( tmpdirname, "audio_output", deepcopy(media_data.BASE64_AUDIO), None ) self.assertEqual("audio_output/0.wav", to_save) to_save = audio_output.save_flagged( tmpdirname, "audio_output", deepcopy(media_data.BASE64_AUDIO), None ) self.assertEqual("audio_output/1.wav", to_save) def test_tokenize(self): """ Tokenize, get_masked_inputs """ x_wav = deepcopy(media_data.BASE64_AUDIO) audio_input = gr.Audio() tokens, _, _ = audio_input.tokenize(x_wav) self.assertEquals(len(tokens), audio_input.interpretation_segments) x_new = audio_input.get_masked_inputs(tokens, [[1] * len(tokens)])[0] similarity = SequenceMatcher(a=x_wav["data"], b=x_new).ratio() self.assertGreater(similarity, 0.9) # TODO: add test_in_interface_as_input def test_in_interface_as_output(self): """ Interface, process """ def generate_noise(duration): return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16) iface = gr.Interface(generate_noise, "slider", "audio") self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64")) class TestFile(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context, default_value """ x_file = deepcopy(media_data.BASE64_FILE) file_input = gr.File() output = file_input.preprocess(x_file) self.assertIsInstance(output, tempfile._TemporaryFileWrapper) self.assertEqual( file_input.serialize("test/test_files/sample_file.pdf", True), "test/test_files/sample_file.pdf", ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None) self.assertEqual("file_input/0", to_save) to_save = file_input.save_flagged(tmpdirname, "file_input", [x_file], None) self.assertEqual("file_input/1", to_save) restored = file_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "file_input/1") self.assertIsInstance(file_input.generate_sample(), dict) file_input = gr.File(label="Upload Your File") self.assertEqual( file_input.get_template_context(), { "file_count": "single", "name": "file", "label": "Upload Your File", "css": {}, "default_value": None, }, ) self.assertIsNone(file_input.preprocess(None)) x_file["is_example"] = True self.assertIsNotNone(file_input.preprocess(x_file)) file_input = gr.File("test/test_files/sample_file.pdf") self.assertEqual( file_input.get_template_context(), deepcopy(media_data.FILE_TEMPLATE_CONTEXT), ) def test_in_interface_as_input(self): """ Interface, process """ x_file = deepcopy(media_data.BASE64_FILE) def get_size_of_file(file_obj): return os.path.getsize(file_obj.name) iface = gr.Interface(get_size_of_file, "file", "number") self.assertEqual(iface.process([[x_file]])[0], [10558]) def test_as_component_as_output(self): """ Interface, process, save_flagged, """ def write_file(content): with open("test.txt", "w") as f: f.write(content) return "test.txt" iface = gr.Interface(write_file, "text", "file") self.assertDictEqual( iface.process(["hello world"])[0][0], { "name": "test.txt", "size": 11, "data": "data:text/plain;base64,aGVsbG8gd29ybGQ=", }, ) file_output = gr.File() with tempfile.TemporaryDirectory() as tmpdirname: to_save = file_output.save_flagged( tmpdirname, "file_output", [deepcopy(media_data.BASE64_FILE)], None ) self.assertEqual("file_output/0", to_save) to_save = file_output.save_flagged( tmpdirname, "file_output", [deepcopy(media_data.BASE64_FILE)], None ) self.assertEqual("file_output/1", to_save) class TestDataframe(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, serialize, save_flagged, restore_flagged, generate_sample, get_template_context """ x_data = [["Tim", 12, False], ["Jan", 24, True]] dataframe_input = gr.Dataframe(headers=["Name", "Age", "Member"]) output = dataframe_input.preprocess(x_data) self.assertEqual(output["Age"][1], 24) self.assertEqual(output["Member"][0], False) self.assertEqual(dataframe_input.preprocess_example(x_data), x_data) self.assertEqual(dataframe_input.serialize(x_data, True), x_data) with tempfile.TemporaryDirectory() as tmpdirname: to_save = dataframe_input.save_flagged( tmpdirname, "dataframe_input", x_data, None ) self.assertEqual(json.dumps(x_data), to_save) restored = dataframe_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(x_data, restored) self.assertIsInstance(dataframe_input.generate_sample(), list) dataframe_input = gr.Dataframe( headers=["Name", "Age", "Member"], label="Dataframe Input" ) self.assertEqual( dataframe_input.get_template_context(), { "headers": ["Name", "Age", "Member"], "datatype": "str", "row_count": 3, "col_count": 3, "col_width": None, "default_value": [ [None, None, None], [None, None, None], [None, None, None], ], "name": "dataframe", "label": "Dataframe Input", "max_rows": 20, "max_cols": None, "overflow_row_behaviour": "paginate", "css": {}, }, ) dataframe_input = gr.Dataframe() output = dataframe_input.preprocess(x_data) self.assertEqual(output[1][1], 24) with self.assertRaises(ValueError): wrong_type = gr.Dataframe(type="unknown") wrong_type.preprocess(x_data) # Output functionalities dataframe_output = gr.Dataframe() output = dataframe_output.postprocess(np.zeros((2, 2))) self.assertDictEqual(output, {"data": [[0, 0], [0, 0]]}) output = dataframe_output.postprocess([[1, 3, 5]]) self.assertDictEqual(output, {"data": [[1, 3, 5]]}) output = dataframe_output.postprocess( pd.DataFrame([[2, True], [3, True], [4, False]], columns=["num", "prime"]) ) self.assertDictEqual( output, {"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]}, ) self.assertEqual( dataframe_output.get_template_context(), { "headers": None, "max_rows": 20, "max_cols": None, "overflow_row_behaviour": "paginate", "name": "dataframe", "label": None, "css": {}, "datatype": "str", "row_count": 3, "col_count": 3, "col_width": None, "default_value": [ [None, None, None], [None, None, None], [None, None, None], ], }, ) with self.assertRaises(ValueError): wrong_type = gr.Dataframe(type="unknown") wrong_type.postprocess(0) with tempfile.TemporaryDirectory() as tmpdirname: to_save = dataframe_output.save_flagged( tmpdirname, "dataframe_output", output, None ) self.assertEqual( to_save, json.dumps( { "headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]], } ), ) self.assertEqual( dataframe_output.restore_flagged(tmpdirname, to_save, None), { "headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]], }, ) def test_in_interface_as_input(self): """ Interface, process, """ x_data = [[1, 2, 3], [4, 5, 6]] iface = gr.Interface(np.max, "numpy", "number") self.assertEqual(iface.process([x_data])[0], [6]) x_data = [["Tim"], ["Jon"], ["Sal"]] def get_last(my_list): return my_list[-1] iface = gr.Interface(get_last, "list", "text") self.assertEqual(iface.process([x_data])[0], ["Sal"]) def test_in_interface_as_output(self): """ Interface, process """ def check_odd(array): return array % 2 == 0 iface = gr.Interface(check_odd, "numpy", "numpy") self.assertEqual( iface.process([[2, 3, 4]])[0][0], {"data": [[True, False, True]]} ) class TestVideo(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, serialize, deserialize, save_flagged, restore_flagged, generate_sample, get_template_context """ x_video = deepcopy(media_data.BASE64_VIDEO) video_input = gr.Video() output = video_input.preprocess(x_video) self.assertIsInstance(output, str) with tempfile.TemporaryDirectory() as tmpdirname: to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None) self.assertEqual("video_input/0.mp4", to_save) to_save = video_input.save_flagged(tmpdirname, "video_input", x_video, None) self.assertEqual("video_input/1.mp4", to_save) restored = video_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(restored, "video_input/1.mp4") self.assertIsInstance(video_input.generate_sample(), dict) video_input = gr.Video(label="Upload Your Video") self.assertEqual( video_input.get_template_context(), { "source": "upload", "name": "video", "label": "Upload Your Video", "css": {}, "default_value": None, }, ) self.assertIsNone(video_input.preprocess(None)) x_video["is_example"] = True self.assertIsNotNone(video_input.preprocess(x_video)) video_input = gr.Video(type="avi") self.assertEqual(video_input.preprocess(x_video)[-3:], "avi") with self.assertRaises(NotImplementedError): video_input.serialize(x_video, True) # Output functionalities y_vid_path = "test/test_files/video_sample.mp4" video_output = gr.Video() self.assertTrue( video_output.postprocess(y_vid_path)["data"].startswith( "data:video/mp4;base64," ) ) self.assertTrue( video_output.deserialize( deepcopy(media_data.BASE64_VIDEO)["data"] ).endswith(".mp4") ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = video_output.save_flagged( tmpdirname, "video_output", deepcopy(media_data.BASE64_VIDEO), None ) self.assertEqual("video_output/0.mp4", to_save) to_save = video_output.save_flagged( tmpdirname, "video_output", deepcopy(media_data.BASE64_VIDEO), None ) self.assertEqual("video_output/1.mp4", to_save) def test_in_interface_as_input(self): """ Interface, process """ x_video = deepcopy(media_data.BASE64_VIDEO) iface = gr.Interface(lambda x: x, "video", "playable_video") self.assertEqual(iface.process([x_video])[0][0]["data"], x_video["data"]) # TODO: test_in_interface_as_output class TestTimeseries(unittest.TestCase): def test_component_functionalities(self): """ Preprocess, postprocess, save_flagged, restore_flagged, generate_sample, get_template_context, """ timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"]) x_timeseries = { "data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] + timeseries_input.y, } output = timeseries_input.preprocess(x_timeseries) self.assertIsInstance(output, pd.core.frame.DataFrame) with tempfile.TemporaryDirectory() as tmpdirname: to_save = timeseries_input.save_flagged( tmpdirname, "video_input", x_timeseries, None ) self.assertEqual(json.dumps(x_timeseries), to_save) restored = timeseries_input.restore_flagged(tmpdirname, to_save, None) self.assertEqual(x_timeseries, restored) self.assertIsInstance(timeseries_input.generate_sample(), dict) timeseries_input = gr.Timeseries( x="time", y="retail", label="Upload Your Timeseries" ) self.assertEqual( timeseries_input.get_template_context(), { "x": "time", "y": ["retail"], "name": "timeseries", "label": "Upload Your Timeseries", "css": {}, "default_value": None, }, ) self.assertIsNone(timeseries_input.preprocess(None)) x_timeseries["range"] = (0, 1) self.assertIsNotNone(timeseries_input.preprocess(x_timeseries)) # Output functionalities timeseries_output = gr.Timeseries(label="Disease") self.assertEqual( timeseries_output.get_template_context(), { "x": None, "y": None, "name": "timeseries", "label": "Disease", "css": {}, "default_value": None, }, ) data = {"Name": ["Tom", "nick", "krish", "jack"], "Age": [20, 21, 19, 18]} df = pd.DataFrame(data) self.assertEqual( timeseries_output.postprocess(df), { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) timeseries_output = gr.Timeseries(y="Age", label="Disease") output = timeseries_output.postprocess(df) self.assertEqual( output, { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) with tempfile.TemporaryDirectory() as tmpdirname: to_save = timeseries_output.save_flagged( tmpdirname, "timeseries_output", output, None ) self.assertEqual( to_save, '{"headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ' '["jack", 18]]}', ) self.assertEqual( timeseries_output.restore_flagged(tmpdirname, to_save, None), { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) # TODO: test_in_interface_as_input def test_in_interface_as_output(self): """ Interface, process """ timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"]) x_timeseries = { "data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] + timeseries_input.y, } iface = gr.Interface(lambda x: x, timeseries_input, "dataframe") self.assertEqual( iface.process([x_timeseries])[0], [ { "headers": ["time", "retail", "food", "other"], "data": [[1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2]], } ], ) class TestNames(unittest.TestCase): # This test ensures that `components.get_component_instance()` works correctly when instantiating from components def test_no_duplicate_uncased_names(self): subclasses = gr.components.Component.__subclasses__() unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses]) self.assertEqual(len(subclasses), len(unique_subclasses_uncased)) class TestLabel(unittest.TestCase): def test_component_functionalities(self): """ Process, postprocess, deserialize, save_flagged, restore_flagged """ y = "happy" label_output = gr.Label() label = label_output.postprocess(y) self.assertDictEqual(label, {"label": "happy"}) self.assertEqual(label_output.deserialize(y), y) self.assertEqual(label_output.deserialize(label), y) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, y) y = {3: 0.7, 1: 0.2, 0: 0.1} label_output = gr.Label() label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, {"label": 0, "confidence": 0.1}, ], }, ) label_output = gr.Label(num_top_classes=2) label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, ], }, ) with self.assertRaises(ValueError): label_output.postprocess([1, 2, 3]) with tempfile.TemporaryDirectory() as tmpdir: to_save = label_output.save_flagged(tmpdir, "label_output", label, None) self.assertEqual(to_save, '{"3": 0.7, "1": 0.2}') self.assertEqual( label_output.restore_flagged(tmpdir, to_save, None), { "label": "3", "confidences": [ {"label": "3", "confidence": 0.7}, {"label": "1", "confidence": 0.2}, ], }, ) self.assertEqual( label_output.get_template_context(), {"name": "label", "label": None, "css": {}}, ) def test_in_interface(self): """ Interface, process """ x_img = deepcopy(media_data.BASE64_IMAGE) def rgb_distribution(img): rgb_dist = np.mean(img, axis=(0, 1)) rgb_dist /= np.sum(rgb_dist) rgb_dist = np.round(rgb_dist, decimals=2) return { "red": rgb_dist[0], "green": rgb_dist[1], "blue": rgb_dist[2], } iface = gr.Interface(rgb_distribution, "image", "label") output = iface.process([x_img])[0][0] self.assertDictEqual( output, { "label": "red", "confidences": [ {"label": "red", "confidence": 0.44}, {"label": "green", "confidence": 0.28}, {"label": "blue", "confidence": 0.28}, ], }, ) class TestHighlightedText(unittest.TestCase): def test_component_functionalities(self): """ get_template_context, save_flagged, restore_flagged """ ht_output = gr.HighlightedText(color_map={"pos": "green", "neg": "red"}) self.assertEqual( ht_output.get_template_context(), { "color_map": {"pos": "green", "neg": "red"}, "name": "highlightedtext", "label": None, "show_legend": False, "css": {}, "default_value": "", }, ) ht = {"pos": "Hello ", "neg": "World"} with tempfile.TemporaryDirectory() as tmpdirname: to_save = ht_output.save_flagged(tmpdirname, "ht_output", ht, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual( ht_output.restore_flagged(tmpdirname, to_save, None), {"pos": "Hello ", "neg": "World"}, ) def test_in_interface(self): """ Interface, process """ def highlight_vowels(sentence): phrases, cur_phrase = [], "" vowels, mode = "aeiou", None for letter in sentence: letter_mode = "vowel" if letter in vowels else "non" if mode is None: mode = letter_mode elif mode != letter_mode: phrases.append((cur_phrase, mode)) cur_phrase = "" mode = letter_mode cur_phrase += letter phrases.append((cur_phrase, mode)) return phrases iface = gr.Interface(highlight_vowels, "text", "highlight") self.assertListEqual( iface.process(["Helloooo"])[0][0], [("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")], ) class TestJSON(unittest.TestCase): def test_component_functionalities(self): """ Postprocess, save_flagged, restore_flagged """ js_output = gr.JSON() self.assertTrue( js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"' ) js = {"pos": "Hello ", "neg": "World"} with tempfile.TemporaryDirectory() as tmpdirname: to_save = js_output.save_flagged(tmpdirname, "js_output", js, None) self.assertEqual(to_save, '{"pos": "Hello ", "neg": "World"}') self.assertEqual( js_output.restore_flagged(tmpdirname, to_save, None), {"pos": "Hello ", "neg": "World"}, ) self.assertEqual( js_output.get_template_context(), {"css": {}, "default_value": '""', "label": None, "name": "json"}, ) def test_in_interface(self): """ Interface, process """ def get_avg_age_per_gender(data): return { "M": int(data[data["gender"] == "M"].mean()), "F": int(data[data["gender"] == "F"].mean()), "O": int(data[data["gender"] == "O"].mean()), } iface = gr.Interface( get_avg_age_per_gender, gr.inputs.Dataframe(headers=["gender", "age"]), "json", ) y_data = [ ["M", 30], ["F", 20], ["M", 40], ["O", 20], ["F", 30], ] self.assertDictEqual(iface.process([y_data])[0][0], {"M": 35, "F": 25, "O": 20}) class TestHTML(unittest.TestCase): def test_component_functionalities(self): """ Get_template_context """ html_component = gr.components.HTML("#Welcome onboard", label="HTML Input") self.assertEqual( { "css": {}, "default_value": "#Welcome onboard", "label": "HTML Input", "name": "html", }, html_component.get_template_context(), ) def test_in_interface(self): """ Interface, process """ def bold_text(text): return "" + text + "" iface = gr.Interface(bold_text, "text", "html") self.assertEqual(iface.process(["test"])[0][0], "test") class TestCarousel(unittest.TestCase): def test_component_functionalities(self): """ Postprocess, get_template_context, save_flagged, restore_flagged """ carousel_output = gr.Carousel( components=[gr.Textbox(), gr.Image()], label="Disease" ) output = carousel_output.postprocess( [ ["Hello World", "test/test_files/bus.png"], ["Bye World", "test/test_files/bus.png"], ] ) self.assertEqual( output, [ ["Hello World", deepcopy(media_data.BASE64_IMAGE)], ["Bye World", deepcopy(media_data.BASE64_IMAGE)], ], ) carousel_output = gr.Carousel(components=gr.Textbox(), label="Disease") output = carousel_output.postprocess([["Hello World"], ["Bye World"]]) self.assertEqual(output, [["Hello World"], ["Bye World"]]) self.assertEqual( carousel_output.get_template_context(), { "components": [ { "name": "textbox", "label": None, "default_value": "", "lines": 1, "css": {}, "placeholder": None, } ], "name": "carousel", "label": "Disease", "css": {}, }, ) output = carousel_output.postprocess(["Hello World", "Bye World"]) self.assertEqual(output, [["Hello World"], ["Bye World"]]) with self.assertRaises(ValueError): carousel_output.postprocess("Hello World!") with tempfile.TemporaryDirectory() as tmpdirname: to_save = carousel_output.save_flagged( tmpdirname, "carousel_output", output, None ) self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]') restored = carousel_output.restore_flagged(tmpdirname, output, None) self.assertEqual(None, restored) def test_in_interface(self): """ Interface, process """ carousel_output = gr.Carousel( components=[gr.Textbox(), gr.Image()], label="Disease" ) def report(img): results = [] for i, mode in enumerate(["Red", "Green", "Blue"]): color_filter = np.array([0, 0, 0]) color_filter[i] = 1 results.append([mode, img * color_filter]) return results iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output) result = iface.process([deepcopy(media_data.BASE64_IMAGE)]) self.assertTrue(result[0][0][0][0] == "Red") self.assertTrue( result[0][0][0][1].startswith("") ) self.assertTrue(result[0][0][1][0] == "Green") self.assertTrue( result[0][0][1][1].startswith("") ) self.assertTrue(result[0][0][2][0] == "Blue") self.assertTrue( result[0][0][2][1].startswith("") ) if __name__ == "__main__": unittest.main()