import unittest import gradio as gr import numpy as np import pandas as pd import tempfile class TestTextbox(unittest.TestCase): def test_in_interface(self): iface = gr.Interface(lambda x: x[-1], "textbox", gr.outputs.Textbox()) self.assertEqual(iface.process(["Hello"])[0], ["o"]) iface = gr.Interface(lambda x: x / 2, "number", gr.outputs.Textbox(type="number")) self.assertEqual(iface.process([10])[0], [5]) class TestLabel(unittest.TestCase): def test_as_component(self): y = 'happy' label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual(label, {"label": "happy"}) y = { 3: 0.7, 1: 0.2, 0: 0.1 } label_output = gr.outputs.Label() label = label_output.postprocess(y) self.assertDictEqual(label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, {"label": 0, "confidence": 0.1}, ] }) def test_in_interface(self): x_img = gr.test_data.BASE64_IMAGE def rgb_distribution(img): rgb_dist = np.mean(img, axis=(0, 1)) rgb_dist /= np.sum(rgb_dist) rgb_dist = np.round(rgb_dist, decimals=2) return { "red": rgb_dist[0], "green": rgb_dist[1], "blue": rgb_dist[2], } iface = gr.Interface(rgb_distribution, "image", "label") output = iface.process([x_img])[0][0] self.assertDictEqual(output, { 'label': 'red', 'confidences': [ {'label': 'red', 'confidence': 0.44}, {'label': 'green', 'confidence': 0.28}, {'label': 'blue', 'confidence': 0.28} ] }) class TestImage(unittest.TestCase): def test_as_component(self): y_img = gr.processing_utils.decode_base64_to_image(gr.test_data.BASE64_IMAGE) image_output = gr.outputs.Image() self.assertTrue(image_output.postprocess(y_img).startswith("")) self.assertTrue(image_output.postprocess(np.array(y_img)).startswith("")) def test_in_interface(self): def generate_noise(width, height): return np.random.randint(0, 256, (width, height, 3)) iface = gr.Interface(generate_noise, ["slider", "slider"], "image") self.assertTrue(iface.process([10, 20])[0][0].startswith("data:image/png;base64")) class TestKeyValues(unittest.TestCase): def test_in_interface(self): def letter_distribution(word): dist = {} for letter in word: dist[letter] = dist.get(letter, 0) + 1 return dist iface = gr.Interface(letter_distribution, "text", "key_values") self.assertListEqual(iface.process(["alpaca"])[0][0], [ ("a", 3), ("l", 1), ("p", 1), ("c", 1)]) class TestHighlightedText(unittest.TestCase): def test_in_interface(self): def highlight_vowels(sentence): phrases, cur_phrase = [], "" vowels, mode = "aeiou", None for letter in sentence: letter_mode = "vowel" if letter in vowels else "non" if mode is None: mode = letter_mode elif mode != letter_mode: phrases.append((cur_phrase, mode)) cur_phrase = "" mode = letter_mode cur_phrase += letter phrases.append((cur_phrase, mode)) return phrases iface = gr.Interface(highlight_vowels, "text", "highlight") self.assertListEqual(iface.process(["Helloooo"])[0][0], [ ("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")]) class TestAudio(unittest.TestCase): def test_as_component(self): y_audio = gr.processing_utils.decode_base64_to_file(gr.test_data.BASE64_AUDIO) audio_output = gr.outputs.Audio(type="file") self.assertTrue(audio_output.postprocess(y_audio.name).startswith("data:audio/wav;base64,UklGRuI/AABXQVZFZm10IBAAA")) def test_in_interface(self): def generate_noise(duration): return 8000, np.random.randint(-256, 256, (duration, 3)) iface = gr.Interface(generate_noise, "slider", "audio") self.assertTrue(iface.process([100])[0][0].startswith("data:audio/wav;base64")) class TestJSON(unittest.TestCase): def test_in_interface(self): def get_avg_age_per_gender(data): return { "M": int(data[data["gender"] == "M"].mean()), "F": int(data[data["gender"] == "F"].mean()), "O": int(data[data["gender"] == "O"].mean()), } iface = gr.Interface( get_avg_age_per_gender, gr.inputs.Dataframe(headers=["gender", "age"]), "json") y_data = [ ["M", 30], ["F", 20], ["M", 40], ["O", 20], ["F", 30], ] self.assertDictEqual(iface.process([y_data])[0][0], { "M": 35, "F": 25, "O": 20 }) class TestHTML(unittest.TestCase): def test_in_interface(self): def bold_text(text): return "" + text + "" iface = gr.Interface(bold_text, "text", "html") self.assertEqual(iface.process(["test"])[0][0], "test") class TestFile(unittest.TestCase): def test_as_component(self): def write_file(content): with open("test.txt", "w") as f: f.write(content) return "test.txt" iface = gr.Interface(write_file, "text", "file") self.assertDictEqual(iface.process(["hello world"])[0][0], { 'name': 'test.txt', 'size': 11, 'data': 'aGVsbG8gd29ybGQ=' }) class TestDataframe(unittest.TestCase): def test_as_component(self): dataframe_output = gr.outputs.Dataframe() output = dataframe_output.postprocess(np.zeros((2,2))) self.assertDictEqual(output, {"data": [[0,0],[0,0]]}) output = dataframe_output.postprocess([[1,3,5]]) self.assertDictEqual(output, {"data": [[1, 3, 5]]}) output = dataframe_output.postprocess(pd.DataFrame( [[2, True], [3, True], [4, False]], columns=["num", "prime"])) self.assertDictEqual(output, {"headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]]}) def test_in_interface(self): def check_odd(array): return array % 2 == 0 iface = gr.Interface(check_odd, "numpy", "numpy") self.assertEqual( iface.process([[2, 3, 4]])[0][0], {"data": [[True, False, True]]}) if __name__ == '__main__': unittest.main()