# Demo: (Timeseries, CheckboxGroup, Slider) -> (Timeseries, Dataframe, Label) import gradio as gr import pandas as pd import random def fraud_detector(card_activity, categories, sensitivity): activity_range = random.randint(0, 100) drop_columns = [column for column in ["retail", "food", "other"] if column not in categories] if len(drop_columns): card_activity.drop(columns=drop_columns, inplace=True) return card_activity, card_activity, {"fraud": activity_range / 100., "not fraud": 1 - activity_range / 100.} iface = gr.Interface(fraud_detector, [ gr.inputs.Timeseries( x="time", y=["retail", "food", "other"] ), gr.inputs.CheckboxGroup(["retail", "food", "other"], default=[ "retail", "food", "other"]), gr.inputs.Slider(1, 3) ], [ "dataframe", gr.outputs.Timeseries( x="time", y=["retail", "food", "other"] ), gr.outputs.Label(label="Fraud Level"), ] ) if __name__ == "__main__": iface.launch()