from keras.models import Sequential, Model from keras.layers import * from keras.activations import relu from keras.initializers import RandomNormal from keras.applications import * import keras.backend as K def FCN(num_output=21, input_shape=(500, 500, 3)): """Instantiate the FCN8s architecture with keras. # Arguments basenet: type of basene {'vgg16'} trainable_base: Bool whether the basenet weights are trainable num_output: number of classes input_shape: input image shape weights: pre-trained weights to load (None for training from scratch) # Returns A Keras model instance """ ROW_AXIS = 1 COL_AXIS = 2 CHANNEL_AXIS = 3 def _crop(target_layer, offset=(None, None), name=None): """Crop the bottom such that it has the same shape as target_layer.""" """ Use shape to prevent undefined output shape in Conv2DTranspose""" def f(x): width = x.shape[ROW_AXIS] height = x.shape[COL_AXIS] target_width = target_layer.shape[ROW_AXIS] target_height = target_layer.shape[COL_AXIS] cropped = Cropping2D(cropping=((offset[0], width - offset[0] - target_width), (offset[1], height - offset[1] - target_height)), name='{}'.format(name))(x) return cropped return f input_tensor = Input(shape=input_shape) pad1 = ZeroPadding2D(padding=(100, 100))(input_tensor) conv1_1 = Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='valid', name='conv1_1')(pad1) conv1_2 = Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same', name='conv1_2')(conv1_1) pool1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool1')(conv1_2) # Block 2 conv2_1 = Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', name='conv2_1')(pool1) conv2_2 = Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding='same', name='conv2_2')(conv2_1) pool2 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool2')(conv2_2) # Block 3 conv3_1 = Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same', name='conv3_1')(pool2) conv3_2 = Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same', name='conv3_2')(conv3_1) conv3_3 = Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding='same', name='conv3_3')(conv3_2) pool3 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool3')(conv3_3) # Block 4 conv4_1 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv4_1')(pool3) conv4_2 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv4_2')(conv4_1) conv4_3 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv4_3')(conv4_2) pool4 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool4')(conv4_3) # Block 5 conv5_1 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv5_1')(pool4) conv5_2 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv5_2')(conv5_1) conv5_3 = Conv2D(filters=512, kernel_size=(3, 3), activation='relu', padding='same', name='conv5_3')(conv5_2) pool5 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool5')(conv5_3) # fully conv fc6 = Conv2D(filters=4096, kernel_size=(7, 7), activation='relu', padding='valid', name='fc6')(pool5) drop6 = Dropout(0.5)(fc6) fc7 = Conv2D(filters=4096, kernel_size=(1, 1), activation='relu', padding='valid', name='fc7')(drop6) drop7 = Dropout(0.5)(fc7) #basenet = VGG16_basenet() # input #input_tensor = Input(shape=input_shape) # Get skip_layers=[drop7, pool4, pool3] from the base net: VGG16 #skip_layers = VGG16_basenet(input_tensor) #drop7 = skip_layers[0] score_fr = Conv2D(filters=num_output, kernel_size=(1, 1), padding='valid', name='score_fr')(drop7) upscore2 = Conv2DTranspose(num_output, kernel_size=4, strides=2, use_bias=False, name='upscore2')(score_fr) # scale pool4 skip for compatibility #pool4 = skip_layers[1] scale_pool4 = Lambda(lambda x: x * 0.01, name='scale_pool4')(pool4) score_pool4 = Conv2D(filters=num_output, kernel_size=(1, 1), padding='valid', name='score_pool4')(scale_pool4) score_pool4c = _crop(upscore2, offset=(5, 5), name='score_pool4c')(score_pool4) fuse_pool4 = add([upscore2, score_pool4c]) upscore_pool4 = Conv2DTranspose(filters=num_output, kernel_size=(4, 4), strides=(2, 2), padding='valid', use_bias=False, data_format=K.image_data_format(), name='upscore_pool4')(fuse_pool4) # scale pool3 skip for compatibility #pool3 = skip_layers[2] scale_pool3 = Lambda(lambda x: x * 0.0001, name='scale_pool3')(pool3) score_pool3 = Conv2D(filters=num_output, kernel_size=(1, 1), padding='valid', name='score_pool3')(scale_pool3) score_pool3c = _crop(upscore_pool4, offset=(9, 9), name='score_pool3c')(score_pool3) fuse_pool3 = add([upscore_pool4, score_pool3c]) # score upscore8 = Conv2DTranspose(filters=num_output, kernel_size=(16, 16), strides=(8, 8), padding='valid', use_bias=False, data_format=K.image_data_format(), name='upscore8')(fuse_pool3) score = _crop(input_tensor, offset=(31, 31), name='score')(upscore8) # model model = Model(input_tensor, score, name='fcn_vgg16') return model