import gradio as gr import random import matplotlib.pyplot as plt import numpy as np def plot_forecast(final_year, companies, noise, show_legend, point_style): start_year = 2020 x = np.arange(start_year, final_year + 1) year_count = x.shape[0] plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style] fig = plt.figure() ax = fig.add_subplot(111) for i, company in enumerate(companies): series = np.arange(0, year_count, dtype=float) series = series ** 2 * (i + 1) series += np.random.rand(year_count) * noise ax.plot(x, series, plt_format) if show_legend: plt.legend(companies) plt.close() return fig iface = gr.Interface(plot_forecast, [ gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"), gr.inputs.CheckboxGroup( ["Google", "Microsoft", "Gradio"], label="Company Selection"), gr.inputs.Slider(1, 100, label="Noise Level"), gr.inputs.Checkbox(label="Show Legend"), gr.inputs.Dropdown(["cross", "line", "circle"], label="Style"), ], gr.outputs.Image(plot=True, label="forecast") ) if __name__ == "__main__": iface.launch()