import unittest import numpy as np import gradio as gr import gradio.inputs import gradio.outputs class TestInterface(unittest.TestCase): def test_input_output_mapping(self): io = Interface(inputs='SketCHPad', outputs='textBOX', model=lambda x: x, model_type='function') self.assertIsInstance(io.input_interface, gradio.inputs.Sketchpad) self.assertIsInstance(io.output_interface, gradio.outputs.Textbox) def test_input_interface_is_instance(self): inp = gradio.inputs.ImageUpload() io = Interface(inputs=inp, outputs='textBOX', model=lambda x: x, model_type='function') self.assertEqual(io.input_interface, inp) def test_output_interface_is_instance(self): out = gradio.outputs.Label(show_confidences=False) io = Interface(inputs='SketCHPad', outputs=out, model=lambda x: x, model_type='function') self.assertEqual(io.output_interface, out) def test_keras_model(self): try: import tensorflow as tf except: raise unittest.SkipTest("Need tensorflow installed to do keras-based tests") inputs = tf.keras.Input(shape=(3,)) x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs) outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) io = Interface(inputs='SketCHPad', outputs='textBOX', model=model, model_type='keras') pred = io.predict(np.ones(shape=(1, 3), )) self.assertEqual(pred.shape, (1, 5)) def test_func_model(self): def model(x): return 2*x io = Interface(inputs='SketCHPad', outputs='textBOX', model=model, model_type='pyfunc') pred = io.predict(np.ones(shape=(1, 3))) self.assertEqual(pred.shape, (1, 3)) def test_pytorch_model(self): try: import torch except: raise unittest.SkipTest("Need torch installed to do pytorch-based tests") class TwoLayerNet(torch.nn.Module): def __init__(self): super(TwoLayerNet, self).__init__() self.linear1 = torch.nn.Linear(3, 4) self.linear2 = torch.nn.Linear(4, 5) def forward(self, x): h_relu = torch.nn.functional.relu(self.linear1(x)) y_pred = self.linear2(h_relu) return y_pred model = TwoLayerNet() io = Interface(inputs='SketCHPad', outputs='textBOX', model=model, model_type='pytorch') pred = io.predict(np.ones(shape=(1, 3), dtype=np.float32)) self.assertEqual(pred.shape, (1, 5)) if __name__ == '__main__': unittest.main()