import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import random import os def random_plot(): start_year = 2020 x = np.arange(start_year, start_year + random.randint(0, 10)) year_count = x.shape[0] plt_format = "-" fig = plt.figure() ax = fig.add_subplot(111) series = np.arange(0, year_count, dtype=float) series = series**2 series += np.random.rand(year_count) ax.plot(x, series, plt_format) return fig img_dir = os.path.join(os.path.dirname(__file__), "files") file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") highlighted_text_output_1 = [ { "entity": "I-LOC", "score": 0.9988978, "index": 2, "word": "Chicago", "start": 5, "end": 12, }, { "entity": "I-MISC", "score": 0.9958592, "index": 5, "word": "Pakistani", "start": 22, "end": 31, }, ] highlighted_text_output_2 = [ { "entity": "I-LOC", "score": 0.9988978, "index": 2, "word": "Chicago", "start": 5, "end": 12, }, { "entity": "I-LOC", "score": 0.9958592, "index": 5, "word": "Pakistan", "start": 22, "end": 30, }, ] highlighted_text = "Does Chicago have any Pakistani restaurants" def random_model3d(): model_3d = random.choice( [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] ) return model_3d