import filecmp import json import os import pathlib import shutil import tempfile import unittest from copy import deepcopy from difflib import SequenceMatcher from unittest.mock import patch import matplotlib.pyplot as plt import numpy as np import pandas as pd import PIL import pytest from scipy.io import wavfile import gradio as gr from gradio import media_data, processing_utils os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" """ Tests are divided into two 1. test_component_functions are unit tests that check essential functions of a component, the functions that are checked are documented in the docstring. 2. test_in_interface_... are functional tests that check a component's functionalities inside an Interface. Please do not use Interface.launch() in this file, as it slow downs the tests. """ class TestComponent(unittest.TestCase): def test_component_functions(self): """ component """ assert isinstance(gr.components.component("text"), gr.templates.Text) def test_raise_warnings(): for c_type, component in zip( ["inputs", "outputs"], [gr.inputs.Textbox, gr.outputs.Label] ): with pytest.warns(UserWarning, match=f"Usage of gradio.{c_type}"): component() class TestTextbox(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, tokenize, generate_sample, get_config """ text_input = gr.Textbox() self.assertEqual(text_input.preprocess("Hello World!"), "Hello World!") self.assertEqual(text_input.postprocess("Hello World!"), "Hello World!") self.assertEqual(text_input.postprocess(None), None) self.assertEqual(text_input.postprocess("Ali"), "Ali") self.assertEqual(text_input.postprocess(2), "2") self.assertEqual(text_input.postprocess(2.14), "2.14") self.assertEqual(text_input.serialize("Hello World!", True), "Hello World!") with self.assertWarns(Warning): _ = gr.Textbox(type="number") self.assertEqual( text_input.tokenize("Hello World! Gradio speaking."), ( ["Hello", "World!", "Gradio", "speaking."], [ "World! Gradio speaking.", "Hello Gradio speaking.", "Hello World! speaking.", "Hello World! Gradio", ], None, ), ) text_input.interpretation_replacement = "unknown" self.assertEqual( text_input.tokenize("Hello World! Gradio speaking."), ( ["Hello", "World!", "Gradio", "speaking."], [ "unknown World! Gradio speaking.", "Hello unknown Gradio speaking.", "Hello World! unknown speaking.", "Hello World! Gradio unknown", ], None, ), ) self.assertEqual( text_input.get_config(), { "lines": 1, "max_lines": 20, "placeholder": None, "value": "", "name": "textbox", "show_label": True, "label": None, "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) self.assertIsInstance(text_input.generate_sample(), str) async def test_in_interface_as_input(self): """ Interface, process, interpret, """ iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox") self.assertEqual(await iface(["Hello"]), ["olleH"]) iface = gr.Interface( lambda sentence: max([len(word) for word in sentence.split()]), gr.Textbox(), "number", interpretation="default", ) scores = await iface.interpret( ["Return the length of the longest word in this sentence"] )[0]["interpretation"] self.assertEqual( scores, [ ("Return", 0.0), (" ", 0), ("the", 0.0), (" ", 0), ("length", 0.0), (" ", 0), ("of", 0.0), (" ", 0), ("the", 0.0), (" ", 0), ("longest", 0.0), (" ", 0), ("word", 0.0), (" ", 0), ("in", 0.0), (" ", 0), ("this", 0.0), (" ", 0), ("sentence", 1.0), (" ", 0), ], ) async def test_in_interface_as_output(self): """ Interface, process """ iface = gr.Interface(lambda x: x[-1], "textbox", gr.Textbox()) self.assertEqual(await iface(["Hello"]), ["o"]) iface = gr.Interface(lambda x: x / 2, "number", gr.Textbox()) self.assertEqual(iface([10]), ["5.0"]) def test_static(self): """ postprocess """ component = gr.Textbox("abc") self.assertEqual(component.get_config().get("value"), "abc") class TestNumber(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, set_interpret_parameters, get_interpretation_neighbors, get_config """ numeric_input = gr.Number() self.assertEqual(numeric_input.preprocess(3), 3.0) self.assertEqual(numeric_input.preprocess(None), None) self.assertEqual(numeric_input.postprocess(3), 3) self.assertEqual(numeric_input.postprocess(3), 3.0) self.assertEqual(numeric_input.postprocess(2.14), 2.14) self.assertEqual(numeric_input.postprocess(None), None) self.assertEqual(numeric_input.serialize(3, True), 3) self.assertIsInstance(numeric_input.generate_sample(), float) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute") self.assertEqual( numeric_input.get_interpretation_neighbors(1), ([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}), ) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent") self.assertEqual( numeric_input.get_interpretation_neighbors(1), ([0.97, 0.98, 0.99, 1.01, 1.02, 1.03], {}), ) self.assertEqual( numeric_input.get_config(), { "value": None, "name": "number", "show_label": True, "label": None, "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) def test_component_functions_integer(self): """ Preprocess, postprocess, serialize, generate_sample, set_interpret_parameters, get_interpretation_neighbors, get_template_context """ numeric_input = gr.Number(precision=0, value=42) self.assertEqual(numeric_input.preprocess(3), 3) self.assertEqual(numeric_input.preprocess(None), None) self.assertEqual(numeric_input.postprocess(3), 3) self.assertEqual(numeric_input.postprocess(3), 3) self.assertEqual(numeric_input.postprocess(2.85), 3) self.assertEqual(numeric_input.postprocess(None), None) self.assertEqual(numeric_input.serialize(3, True), 3) self.assertIsInstance(numeric_input.generate_sample(), int) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute") self.assertEqual( numeric_input.get_interpretation_neighbors(1), ([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}), ) numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent") self.assertEqual( numeric_input.get_interpretation_neighbors(100), ([97.0, 98.0, 99.0, 101.0, 102.0, 103.0], {}), ) with self.assertRaises(ValueError) as error: numeric_input.get_interpretation_neighbors(1) assert error.msg == "Cannot generate valid set of neighbors" numeric_input.set_interpret_parameters( steps=3, delta=1.24, delta_type="absolute" ) with self.assertRaises(ValueError) as error: numeric_input.get_interpretation_neighbors(4) assert error.msg == "Cannot generate valid set of neighbors" self.assertEqual( numeric_input.get_config(), { "value": 42, "name": "number", "show_label": True, "label": None, "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) def test_component_functions_precision(self): """ Preprocess, postprocess, serialize, generate_sample, set_interpret_parameters, get_interpretation_neighbors, get_template_context """ numeric_input = gr.Number(precision=2, value=42.3428) self.assertEqual(numeric_input.preprocess(3.231241), 3.23) self.assertEqual(numeric_input.preprocess(None), None) self.assertEqual(numeric_input.postprocess(-42.1241), -42.12) self.assertEqual(numeric_input.postprocess(5.6784), 5.68) self.assertEqual(numeric_input.postprocess(2.1421), 2.14) self.assertEqual(numeric_input.postprocess(None), None) async def test_in_interface_as_input(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: x**2, "number", "textbox") self.assertEqual(iface([2]), ["4.0"]) iface = gr.Interface( lambda x: x**2, "number", "number", interpretation="default" ) scores = (await iface.interpret([2]))[0]["interpretation"] self.assertEqual( scores, [ (1.94, -0.23640000000000017), (1.96, -0.15840000000000032), (1.98, -0.07960000000000012), [2, None], (2.02, 0.08040000000000003), (2.04, 0.16159999999999997), (2.06, 0.24359999999999982), ], ) async def test_precision_0_in_interface(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: x**2, gr.Number(precision=0), "textbox") self.assertEqual(iface([2]), ["4"]) iface = gr.Interface( lambda x: x**2, "number", gr.Number(precision=0), interpretation="default" ) # Output gets rounded to 4 for all input so no change scores = (await iface.interpret([2]))[0]["interpretation"] self.assertEqual( scores, [ (1.94, 0.0), (1.96, 0.0), (1.98, 0.0), [2, None], (2.02, 0.0), (2.04, 0.0), (2.06, 0.0), ], ) async def test_in_interface_as_output(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: int(x) ** 2, "textbox", "number") self.assertEqual(iface([2]), [4.0]) iface = gr.Interface( lambda x: x**2, "number", "number", interpretation="default" ) scores = (await iface.interpret([2]))[0]["interpretation"] self.assertEqual( scores, [ (1.94, -0.23640000000000017), (1.96, -0.15840000000000032), (1.98, -0.07960000000000012), [2, None], (2.02, 0.08040000000000003), (2.04, 0.16159999999999997), (2.06, 0.24359999999999982), ], ) def test_static(self): """ postprocess """ component = gr.Number() self.assertEqual(component.get_config().get("value"), None) component = gr.Number(3) self.assertEqual(component.get_config().get("value"), 3.0) class TestSlider(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, get_config """ slider_input = gr.Slider() self.assertEqual(slider_input.preprocess(3.0), 3.0) self.assertEqual(slider_input.postprocess(3), 3) self.assertEqual(slider_input.postprocess(3), 3) self.assertEqual(slider_input.postprocess(None), 0) self.assertEqual(slider_input.serialize(3, True), 3) self.assertIsInstance(slider_input.generate_sample(), int) slider_input = gr.Slider(10, 20, value=15, step=1, label="Slide Your Input") self.assertEqual( slider_input.get_config(), { "minimum": 10, "maximum": 20, "step": 1, "value": 15, "name": "slider", "show_label": True, "label": "Slide Your Input", "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) async def test_in_interface(self): """ " Interface, process, interpret """ iface = gr.Interface(lambda x: x**2, "slider", "textbox") self.assertEqual(iface([2]), ["4"]) iface = gr.Interface( lambda x: x**2, "slider", "number", interpretation="default" ) scores = (await iface.interpret([2]))[0]["interpretation"] self.assertEqual( scores, [ -4.0, 200.08163265306123, 812.3265306122449, 1832.7346938775513, 3261.3061224489797, 5098.040816326531, 7342.938775510205, 9996.0, ], ) def test_static(self): """ postprocess """ component = gr.Slider(0, 100, 5) self.assertEqual(component.get_config().get("value"), 5) component = gr.Slider(0, 100, None) self.assertEqual(component.get_config().get("value"), 0) class TestCheckbox(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, get_config """ bool_input = gr.Checkbox() self.assertEqual(bool_input.preprocess(True), True) self.assertEqual(bool_input.postprocess(True), True) self.assertEqual(bool_input.postprocess(True), True) self.assertEqual(bool_input.serialize(True, True), True) self.assertIsInstance(bool_input.generate_sample(), bool) bool_input = gr.Checkbox(value=True, label="Check Your Input") self.assertEqual( bool_input.get_config(), { "value": True, "name": "checkbox", "show_label": True, "label": "Check Your Input", "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) async def test_in_interface(self): """ Interface, process, interpret """ iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "number") self.assertEqual(iface([True]), [1]) iface = gr.Interface( lambda x: 1 if x else 0, "checkbox", "number", interpretation="default" ) scores = (await iface.interpret([False]))[0]["interpretation"] self.assertEqual(scores, (None, 1.0)) scores = (await iface.interpret([True]))[0]["interpretation"] self.assertEqual(scores, (-1.0, None)) class TestCheckboxGroup(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, get_config """ checkboxes_input = gr.CheckboxGroup(["a", "b", "c"]) self.assertEqual(checkboxes_input.preprocess(["a", "c"]), ["a", "c"]) self.assertEqual(checkboxes_input.postprocess(["a", "c"]), ["a", "c"]) self.assertEqual(checkboxes_input.serialize(["a", "c"], True), ["a", "c"]) self.assertIsInstance(checkboxes_input.generate_sample(), list) checkboxes_input = gr.CheckboxGroup( value=["a", "c"], choices=["a", "b", "c"], label="Check Your Inputs", ) self.assertEqual( checkboxes_input.get_config(), { "choices": ["a", "b", "c"], "value": ["a", "c"], "name": "checkboxgroup", "show_label": True, "label": "Check Your Inputs", "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) with self.assertRaises(ValueError): wrong_type = gr.CheckboxGroup(["a"], type="unknown") wrong_type.preprocess(0) async def test_in_interface(self): """ Interface, process """ checkboxes_input = gr.CheckboxGroup(["a", "b", "c"]) iface = gr.Interface(lambda x: "|".join(x), checkboxes_input, "textbox") self.assertEqual(await iface([["a", "c"]]), ["a|c"]) self.assertEqual(await iface([[]]), [""]) _ = gr.CheckboxGroup(["a", "b", "c"], type="index") class TestRadio(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, get_config """ radio_input = gr.Radio(["a", "b", "c"]) self.assertEqual(radio_input.preprocess("c"), "c") self.assertEqual(radio_input.postprocess("a"), "a") self.assertEqual(radio_input.serialize("a", True), "a") self.assertIsInstance(radio_input.generate_sample(), str) radio_input = gr.Radio( choices=["a", "b", "c"], default="a", label="Pick Your One Input" ) self.assertEqual( radio_input.get_config(), { "choices": ["a", "b", "c"], "value": None, "name": "radio", "show_label": True, "label": "Pick Your One Input", "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) with self.assertRaises(ValueError): wrong_type = gr.Radio(["a", "b"], type="unknown") wrong_type.preprocess(0) async def test_in_interface(self): """ Interface, process, interpret """ radio_input = gr.Radio(["a", "b", "c"]) iface = gr.Interface(lambda x: 2 * x, radio_input, "textbox") self.assertEqual(iface(["c"]), ["cc"]) radio_input = gr.Radio(["a", "b", "c"], type="index") iface = gr.Interface( lambda x: 2 * x, radio_input, "number", interpretation="default" ) self.assertEqual(iface(["c"]), [4]) scores = (await iface.interpret(["b"]))[0]["interpretation"] self.assertEqual(scores, [-2.0, None, 2.0]) class TestImage(unittest.TestCase): async def test_component_functions(self): """ Preprocess, postprocess, serialize, generate_sample, get_config, _segment_by_slic type: pil, file, filepath, numpy """ img = deepcopy(media_data.BASE64_IMAGE) image_input = gr.Image() self.assertEqual(image_input.preprocess(img).shape, (68, 61, 3)) image_input = gr.Image(shape=(25, 25), image_mode="L") self.assertEqual(image_input.preprocess(img).shape, (25, 25)) image_input = gr.Image(shape=(30, 10), type="pil") self.assertEqual(image_input.preprocess(img).size, (30, 10)) self.assertEqual(image_input.postprocess("test/test_files/bus.png"), img) self.assertEqual(image_input.serialize("test/test_files/bus.png", True), img) self.assertIsInstance(image_input.generate_sample(), str) image_input = gr.Image( source="upload", tool="editor", type="pil", label="Upload Your Image" ) self.assertEqual( image_input.get_config(), { "image_mode": "RGB", "shape": None, "source": "upload", "tool": "editor", "name": "image", "streaming": False, "show_label": True, "label": "Upload Your Image", "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, "mirror_webcam": True, }, ) self.assertIsNone(image_input.preprocess(None)) image_input = gr.Image(invert_colors=True) self.assertIsNotNone(image_input.preprocess(img)) image_input.preprocess(img) with self.assertWarns(Warning): file_image = gr.Image(type="file") file_image.preprocess(deepcopy(media_data.BASE64_IMAGE)) file_image = gr.Image(type="filepath") self.assertIsInstance(file_image.preprocess(img), str) with self.assertRaises(ValueError): wrong_type = gr.Image(type="unknown") wrong_type.preprocess(img) with self.assertRaises(ValueError): wrong_type = gr.Image(type="unknown") wrong_type.serialize("test/test_files/bus.png", False) img_pil = PIL.Image.open("test/test_files/bus.png") image_input = gr.Image(type="numpy") self.assertIsInstance(image_input.serialize(img_pil, False), str) image_input = gr.Image(type="pil") self.assertIsInstance(image_input.serialize(img_pil, False), str) image_input = gr.Image(type="file") with open("test/test_files/bus.png") as f: self.assertEqual(image_input.serialize(f, False), img) image_input.shape = (30, 10) self.assertIsNotNone(image_input._segment_by_slic(img)) # Output functionalities y_img = gr.processing_utils.decode_base64_to_image( deepcopy(media_data.BASE64_IMAGE) ) image_output = gr.Image() self.assertTrue( image_output.postprocess(y_img).startswith( "" ) ) self.assertTrue( image_output.postprocess(np.array(y_img)).startswith( "" ) ) with self.assertRaises(ValueError): image_output.postprocess([1, 2, 3]) image_output = gr.Image(type="numpy") self.assertTrue( image_output.postprocess(y_img).startswith("data:image/png;base64,") ) async def test_in_interface_as_input(self): """ Interface, process, interpret type: file interpretation: default, shap, """ img = deepcopy(media_data.BASE64_IMAGE) image_input = gr.Image() iface = gr.Interface( lambda x: PIL.Image.open(x).rotate(90, expand=True), gr.Image(shape=(30, 10), type="file"), "image", ) output = (await iface([img]))[0] self.assertEqual( gr.processing_utils.decode_base64_to_image(output).size, (10, 30) ) iface = gr.Interface( lambda x: np.sum(x), image_input, "number", interpretation="default" ) scores = (await iface.interpret([img]))[0]["interpretation"] self.assertEqual( scores, deepcopy(media_data.SUM_PIXELS_INTERPRETATION)["scores"][0] ) iface = gr.Interface( lambda x: np.sum(x), image_input, "label", interpretation="shap" ) scores = (await iface.interpret([img]))[0]["interpretation"] self.assertEqual( len(scores[0]), len(deepcopy(media_data.SUM_PIXELS_SHAP_INTERPRETATION)["scores"][0][0]), ) image_input = gr.Image(shape=(30, 10)) iface = gr.Interface( lambda x: np.sum(x), image_input, "number", interpretation="default" ) self.assertIsNotNone(await iface.interpret([img])) async def test_in_interface_as_output(self): """ Interface, process """ def generate_noise(width, height): return np.random.randint(0, 256, (width, height, 3)) iface = gr.Interface(generate_noise, ["slider", "slider"], "image") self.assertTrue((await iface([10, 20]))[0].startswith("data:image/png;base64")) def test_static(self): """ postprocess """ component = gr.Image("test/test_files/bus.png") self.assertEqual(component.get_config().get("value"), media_data.BASE64_IMAGE) component = gr.Image(None) self.assertEqual(component.get_config().get("value"), None) class TestPlot(unittest.TestCase): async def test_in_interface_as_output(self): """ Interface, process """ def plot(num): fig = plt.figure() plt.plot(range(num), range(num)) return fig iface = gr.Interface(plot, "slider", "plot") output = (await iface([10]))[0] self.assertEqual(output["type"], "matplotlib") self.assertTrue(output["plot"].startswith("data:image/png;base64")) def test_static(self): """ postprocess """ fig = plt.figure() plt.plot([1, 2, 3], [1, 2, 3]) component = gr.Plot(fig) self.assertNotEqual(component.get_config().get("value"), None) component = gr.Plot(None) self.assertEqual(component.get_config().get("value"), None) class TestAudio(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess serialize, generate_sample, get_config, deserialize type: filepath, numpy, file """ x_wav = deepcopy(media_data.BASE64_AUDIO) audio_input = gr.Audio() output = audio_input.preprocess(x_wav) self.assertEqual(output[0], 8000) self.assertEqual(output[1].shape, (8046,)) assert filecmp.cmp( "test/test_files/audio_sample.wav", audio_input.serialize("test/test_files/audio_sample.wav")["name"], ) self.assertIsInstance(audio_input.generate_sample(), dict) audio_input = gr.Audio(label="Upload Your Audio") self.assertEqual( audio_input.get_config(), { "source": "upload", "name": "audio", "streaming": False, "show_label": True, "label": "Upload Your Audio", "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) self.assertIsNone(audio_input.preprocess(None)) x_wav["is_example"] = True x_wav["crop_min"], x_wav["crop_max"] = 1, 4 self.assertIsNotNone(audio_input.preprocess(x_wav)) audio_input = gr.Audio(type="filepath") self.assertIsInstance(audio_input.preprocess(x_wav), str) with self.assertRaises(ValueError): audio_input = gr.Audio(type="unknown") audio_input.preprocess(x_wav) audio_input.serialize(x_wav) audio_input = gr.Audio(type="numpy") # Output functionalities y_audio = gr.processing_utils.decode_base64_to_file( deepcopy(media_data.BASE64_AUDIO)["data"] ) audio_output = gr.Audio(type="file") self.assertTrue( filecmp.cmp(y_audio.name, audio_output.postprocess(y_audio.name)["name"]) ) self.assertEqual( audio_output.get_config(), { "name": "audio", "streaming": False, "show_label": True, "label": None, "source": "upload", "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) self.assertTrue( audio_output.deserialize( { "name": None, "data": deepcopy(media_data.BASE64_AUDIO)["data"], "is_file": False, } ).endswith(".wav") ) def test_tokenize(self): """ Tokenize, get_masked_inputs """ x_wav = deepcopy(media_data.BASE64_AUDIO) audio_input = gr.Audio() tokens, _, _ = audio_input.tokenize(x_wav) self.assertEqual(len(tokens), audio_input.interpretation_segments) x_new = audio_input.get_masked_inputs(tokens, [[1] * len(tokens)])[0] similarity = SequenceMatcher(a=x_wav["data"], b=x_new).ratio() self.assertGreater(similarity, 0.9) async def test_in_interface(self): def reverse_audio(audio): sr, data = audio return (sr, np.flipud(data)) iface = gr.Interface(reverse_audio, "audio", "audio") reversed_data = (await iface([deepcopy(media_data.BASE64_AUDIO)]))[0] reversed_input = {"name": "fake_name", "data": reversed_data} self.assertTrue(reversed_data.startswith("data:audio/wav;base64,UklGRgA/")) self.assertTrue( (await iface([deepcopy(media_data.BASE64_AUDIO)]))[0].startswith( "data:audio/wav;base64,UklGRgA/" ) ) self.maxDiff = None reversed_reversed_data = (await iface([reversed_input]))[0] similarity = SequenceMatcher( a=reversed_reversed_data, b=media_data.BASE64_AUDIO["data"] ).ratio() self.assertGreater(similarity, 0.99) async def test_in_interface_as_output(self): """ Interface, process """ def generate_noise(duration): return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16) iface = gr.Interface(generate_noise, "slider", "audio") self.assertTrue((await iface([100]))[0].startswith("data:audio/wav;base64")) class TestFile(unittest.TestCase): def test_component_functions(self): """ Preprocess, serialize, generate_sample, get_config, value """ x_file = deepcopy(media_data.BASE64_FILE) file_input = gr.File() output = file_input.preprocess(x_file) self.assertIsInstance(output, tempfile._TemporaryFileWrapper) serialized = file_input.serialize("test/test_files/sample_file.pdf") assert filecmp.cmp( serialized["name"], "test/test_files/sample_file.pdf", ) assert serialized["orig_name"] == "sample_file.pdf" assert output.orig_name == "test/test_files/sample_file.pdf" self.assertIsInstance(file_input.generate_sample(), dict) file_input = gr.File(label="Upload Your File") self.assertEqual( file_input.get_config(), { "file_count": "single", "name": "file", "show_label": True, "label": "Upload Your File", "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) self.assertIsNone(file_input.preprocess(None)) x_file["is_example"] = True self.assertIsNotNone(file_input.preprocess(x_file)) async def test_in_interface_as_input(self): """ Interface, process """ x_file = deepcopy(media_data.BASE64_FILE) def get_size_of_file(file_obj): return os.path.getsize(file_obj.name) iface = gr.Interface(get_size_of_file, "file", "number") self.assertEqual(await iface([[x_file]]), [10558]) async def test_as_component_as_output(self): """ Interface, process """ def write_file(content): with open("test.txt", "w") as f: f.write(content) return "test.txt" iface = gr.Interface(write_file, "text", "file") self.assertDictEqual( (await iface(["hello world"]))[0], { "name": "test.txt", "size": 11, "data": "data:text/plain;base64,aGVsbG8gd29ybGQ=", }, ) class TestDataframe(unittest.TestCase): def test_component_functions(self): """ Preprocess, serialize, generate_sample, get_config """ x_data = { "data": [["Tim", 12, False], ["Jan", 24, True]], "headers": ["Name", "Age", "Member"], } dataframe_input = gr.Dataframe(headers=["Name", "Age", "Member"]) output = dataframe_input.preprocess(x_data) self.assertEqual(output["Age"][1], 24) self.assertEqual(output["Member"][0], False) self.assertEqual(dataframe_input.postprocess(x_data), x_data) self.assertIsInstance(dataframe_input.generate_sample(), list) dataframe_input = gr.Dataframe( headers=["Name", "Age", "Member"], label="Dataframe Input" ) self.assertEqual( dataframe_input.get_config(), { "headers": ["Name", "Age", "Member"], "datatype": ["str", "str", "str"], "row_count": (1, "dynamic"), "col_count": (3, "dynamic"), "value": { "data": [ ["", "", ""], ], "headers": ["Name", "Age", "Member"], }, "name": "dataframe", "show_label": True, "label": "Dataframe Input", "max_rows": 20, "max_cols": None, "overflow_row_behaviour": "paginate", "style": {}, "elem_id": None, "visible": True, "interactive": None, "wrap": False, }, ) dataframe_input = gr.Dataframe() output = dataframe_input.preprocess(x_data) self.assertEqual(output["Age"][1], 24) with self.assertRaises(ValueError): wrong_type = gr.Dataframe(type="unknown") wrong_type.preprocess(x_data) dataframe_output = gr.Dataframe() self.assertEqual( dataframe_output.get_config(), { "headers": [1, 2, 3], "max_rows": 20, "max_cols": None, "overflow_row_behaviour": "paginate", "name": "dataframe", "show_label": True, "label": None, "style": {}, "elem_id": None, "visible": True, "datatype": ["str", "str", "str"], "row_count": (1, "dynamic"), "col_count": (3, "dynamic"), "value": { "data": [ ["", "", ""], ], "headers": [1, 2, 3], }, "interactive": None, "wrap": False, }, ) def test_postprocess(self): """ postprocess """ dataframe_output = gr.Dataframe() output = dataframe_output.postprocess(np.zeros((2, 2))) self.assertDictEqual(output, {"data": [[0, 0], [0, 0]], "headers": [1, 2]}) output = dataframe_output.postprocess([[1, 3, 5]]) self.assertDictEqual(output, {"data": [[1, 3, 5]], "headers": [1, 2, 3]}) output = dataframe_output.postprocess( pd.DataFrame([[2, True], [3, True], [4, False]], columns=["num", "prime"]) ) self.assertDictEqual( output, { "headers": ["num", "prime"], "data": [[2, True], [3, True], [4, False]], }, ) with self.assertRaises(ValueError): wrong_type = gr.Dataframe(type="unknown") wrong_type.postprocess(0) # When the headers don't match the data dataframe_output = gr.Dataframe(headers=["one", "two", "three"]) output = dataframe_output.postprocess([[2, True], [3, True]]) self.assertDictEqual( output, { "headers": ["one", "two"], "data": [[2, True], [3, True]], }, ) dataframe_output = gr.Dataframe(headers=["one", "two", "three"]) output = dataframe_output.postprocess([[2, True, "ab", 4], [3, True, "cd", 5]]) self.assertDictEqual( output, { "headers": ["one", "two", "three", 4], "data": [[2, True, "ab", 4], [3, True, "cd", 5]], }, ) async def test_in_interface_as_input(self): """ Interface, process, """ x_data = {"data": [[1, 2, 3], [4, 5, 6]]} iface = gr.Interface(np.max, "numpy", "number") self.assertEqual(await iface([x_data]), [6]) x_data = {"data": [["Tim"], ["Jon"], ["Sal"]], "headers": [1, 2, 3]} def get_last(my_list): return my_list[-1][-1] iface = gr.Interface(get_last, "list", "text") self.assertEqual(await iface([x_data]), ["Sal"]) async def test_in_interface_as_output(self): """ Interface, process """ def check_odd(array): return array % 2 == 0 iface = gr.Interface(check_odd, "numpy", "numpy") self.assertEqual( (await iface([{"data": [[2, 3, 4]]}]))[0], {"data": [[True, False, True]], "headers": [1, 2, 3]}, ) class TestVideo(unittest.TestCase): def test_component_functions(self): """ Preprocess, serialize, deserialize, generate_sample, get_config """ x_video = deepcopy(media_data.BASE64_VIDEO) video_input = gr.Video() output = video_input.preprocess(x_video) self.assertIsInstance(output, str) self.assertIsInstance(video_input.generate_sample(), dict) video_input = gr.Video(label="Upload Your Video") self.assertEqual( video_input.get_config(), { "source": "upload", "name": "video", "show_label": True, "label": "Upload Your Video", "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, "mirror_webcam": True, }, ) self.assertIsNone(video_input.preprocess(None)) x_video["is_example"] = True self.assertIsNotNone(video_input.preprocess(x_video)) video_input = gr.Video(format="avi") self.assertEqual(video_input.preprocess(x_video)[-3:], "avi") assert filecmp.cmp( video_input.serialize(x_video["name"])["name"], x_video["name"] ) # Output functionalities y_vid_path = "test/test_files/video_sample.mp4" video_output = gr.Video() self.assertTrue(video_output.postprocess(y_vid_path)["name"].endswith("mp4")) self.assertTrue( video_output.deserialize( { "name": None, "data": deepcopy(media_data.BASE64_VIDEO)["data"], "is_file": False, } ).endswith(".mp4") ) async def test_in_interface(self): """ Interface, process """ x_video = deepcopy(media_data.BASE64_VIDEO) iface = gr.Interface(lambda x: x, "video", "playable_video") self.assertEqual((await iface([x_video]))[0]["data"], x_video["data"]) class TestTimeseries(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, generate_sample, get_config, """ timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"]) x_timeseries = { "data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] + timeseries_input.y, } output = timeseries_input.preprocess(x_timeseries) self.assertIsInstance(output, pd.core.frame.DataFrame) self.assertIsInstance(timeseries_input.generate_sample(), dict) timeseries_input = gr.Timeseries( x="time", y="retail", label="Upload Your Timeseries" ) self.assertEqual( timeseries_input.get_config(), { "x": "time", "y": ["retail"], "name": "timeseries", "show_label": True, "label": "Upload Your Timeseries", "colors": None, "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) self.assertIsNone(timeseries_input.preprocess(None)) x_timeseries["range"] = (0, 1) self.assertIsNotNone(timeseries_input.preprocess(x_timeseries)) # Output functionalities timeseries_output = gr.Timeseries(label="Disease") self.assertEqual( timeseries_output.get_config(), { "x": None, "y": None, "name": "timeseries", "show_label": True, "label": "Disease", "colors": None, "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) data = {"Name": ["Tom", "nick", "krish", "jack"], "Age": [20, 21, 19, 18]} df = pd.DataFrame(data) self.assertEqual( timeseries_output.postprocess(df), { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) timeseries_output = gr.Timeseries(y="Age", label="Disease") output = timeseries_output.postprocess(df) self.assertEqual( output, { "headers": ["Name", "Age"], "data": [["Tom", 20], ["nick", 21], ["krish", 19], ["jack", 18]], }, ) async def test_in_interface_as_input(self): """ Interface, process """ timeseries_input = gr.Timeseries(x="time", y=["retail", "food", "other"]) x_timeseries = { "data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] + timeseries_input.y, } iface = gr.Interface(lambda x: x, timeseries_input, "dataframe") self.assertEqual( await iface([x_timeseries]), [ { "headers": ["time", "retail", "food", "other"], "data": [ [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2], ], } ], ) async def test_in_interface_as_output(self): """ Interface, process """ timeseries_output = gr.Timeseries(x="time", y=["retail", "food", "other"]) iface = gr.Interface(lambda x: x, "dataframe", timeseries_output) df = { "data": pd.DataFrame( { "time": [1, 2, 3, 4], "retail": [1, 2, 3, 2], "food": [1, 2, 3, 2], "other": [1, 2, 4, 2], } ) } self.assertEqual( await iface([df]), [ { "headers": ["time", "retail", "food", "other"], "data": [ [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 4], [4, 2, 2, 2], ], } ], ) class TestNames(unittest.TestCase): # This test ensures that `components.get_component_instance()` works correctly when instantiating from components def test_no_duplicate_uncased_names(self): subclasses = gr.components.Component.__subclasses__() unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses]) self.assertEqual(len(subclasses), len(unique_subclasses_uncased)) class TestLabel(unittest.TestCase): def test_component_functions(self): """ Process, postprocess, deserialize """ y = "happy" label_output = gr.Label() label = label_output.postprocess(y) self.assertDictEqual(label, {"label": "happy"}) self.assertEqual(json.load(open(label_output.deserialize(label))), label) y = {3: 0.7, 1: 0.2, 0: 0.1} label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, {"label": 0, "confidence": 0.1}, ], }, ) label_output = gr.Label(num_top_classes=2) label = label_output.postprocess(y) self.assertDictEqual( label, { "label": 3, "confidences": [ {"label": 3, "confidence": 0.7}, {"label": 1, "confidence": 0.2}, ], }, ) with self.assertRaises(ValueError): label_output.postprocess([1, 2, 3]) test_file_dir = pathlib.Path(pathlib.Path(__file__).parent, "test_files") path = str(pathlib.Path(test_file_dir, "test_label_json.json")) label = label_output.postprocess(path) self.assertEqual(label["label"], "web site") self.assertEqual( label_output.get_config(), { "name": "label", "show_label": True, "num_top_classes": 2, "value": None, "label": None, "style": {}, "elem_id": None, "visible": True, "interactive": None, }, ) async def test_in_interface(self): """ Interface, process """ x_img = deepcopy(media_data.BASE64_IMAGE) def rgb_distribution(img): rgb_dist = np.mean(img, axis=(0, 1)) rgb_dist /= np.sum(rgb_dist) rgb_dist = np.round(rgb_dist, decimals=2) return { "red": rgb_dist[0], "green": rgb_dist[1], "blue": rgb_dist[2], } iface = gr.Interface(rgb_distribution, "image", "label") output = (await iface([x_img]))[0] self.assertDictEqual( output, { "label": "red", "confidences": [ {"label": "red", "confidence": 0.44}, {"label": "green", "confidence": 0.28}, {"label": "blue", "confidence": 0.28}, ], }, ) class TestHighlightedText(unittest.TestCase): def test_postprocess(self): """ postprocess """ component = gr.HighlightedText() result = [ ("", None), ("Wolfgang", "PER"), (" lives in ", None), ("Berlin", "LOC"), ("", None), ] result_ = component.postprocess(result) self.assertEqual(result, result_) text = "Wolfgang lives in Berlin" entities = [ {"entity": "PER", "start": 0, "end": 8}, {"entity": "LOC", "start": 18, "end": 24}, ] result_ = component.postprocess({"text": text, "entities": entities}) self.assertEqual(result, result_) text = "Wolfgang lives in Berlin" entities = [ {"entity": "LOC", "start": 18, "end": 24}, {"entity": "PER", "start": 0, "end": 8}, ] result_ = component.postprocess({"text": text, "entities": entities}) self.assertEqual(result, result_) text = "I live there" entities = [] result_ = component.postprocess({"text": text, "entities": entities}) self.assertEqual([(text, None)], result_) text = "Wolfgang" entities = [ {"entity": "PER", "start": 0, "end": 8}, ] result_ = component.postprocess({"text": text, "entities": entities}) self.assertEqual([("", None), (text, "PER"), ("", None)], result_) def test_component_functions(self): """ get_config """ ht_output = gr.HighlightedText(color_map={"pos": "green", "neg": "red"}) self.assertEqual( ht_output.get_config(), { "color_map": {"pos": "green", "neg": "red"}, "name": "highlightedtext", "show_label": True, "label": None, "show_legend": False, "style": {}, "elem_id": None, "visible": True, "value": None, "interactive": None, }, ) async def test_in_interface(self): """ Interface, process """ def highlight_vowels(sentence): phrases, cur_phrase = [], "" vowels, mode = "aeiou", None for letter in sentence: letter_mode = "vowel" if letter in vowels else "non" if mode is None: mode = letter_mode elif mode != letter_mode: phrases.append((cur_phrase, mode)) cur_phrase = "" mode = letter_mode cur_phrase += letter phrases.append((cur_phrase, mode)) return phrases iface = gr.Interface(highlight_vowels, "text", "highlight") self.assertListEqual( (await iface(["Helloooo"]))[0], [("H", "non"), ("e", "vowel"), ("ll", "non"), ("oooo", "vowel")], ) class TestJSON(unittest.TestCase): def test_component_functions(self): """ Postprocess """ js_output = gr.JSON() self.assertTrue( js_output.postprocess('{"a":1, "b": 2}'), '"{\\"a\\":1, \\"b\\": 2}"' ) self.assertEqual( js_output.get_config(), { "style": {}, "elem_id": None, "visible": True, "value": None, "show_label": True, "label": None, "name": "json", "interactive": None, }, ) async def test_in_interface(self): """ Interface, process """ def get_avg_age_per_gender(data): print(data) return { "M": int(data[data["gender"] == "M"].mean()), "F": int(data[data["gender"] == "F"].mean()), "O": int(data[data["gender"] == "O"].mean()), } iface = gr.Interface( get_avg_age_per_gender, gr.Dataframe(headers=["gender", "age"]), "json", ) y_data = [ ["M", 30], ["F", 20], ["M", 40], ["O", 20], ["F", 30], ] self.assertDictEqual( (await iface([{"data": y_data, "headers": ["gender", "age"]}]))[0], {"M": 35, "F": 25, "O": 20}, ) class TestHTML(unittest.TestCase): def test_component_functions(self): """ get_config """ html_component = gr.components.HTML("#Welcome onboard", label="HTML Input") self.assertEqual( { "style": {}, "elem_id": None, "visible": True, "value": "#Welcome onboard", "show_label": True, "label": "HTML Input", "name": "html", "interactive": None, }, html_component.get_config(), ) async def test_in_interface(self): """ Interface, process """ def bold_text(text): return "" + text + "" iface = gr.Interface(bold_text, "text", "html") self.assertEqual((await iface(["test"]))[0], "test") class TestModel3D(unittest.TestCase): def test_component_functions(self): """ get_config """ component = gr.components.Model3D(None, label="Model") self.assertEqual( { "clearColor": [0.2, 0.2, 0.2, 1.0], "value": None, "label": "Model", "show_label": True, "interactive": None, "name": "model3d", "visible": True, "elem_id": None, "style": {}, }, component.get_config(), ) async def test_in_interface(self): """ Interface, process """ iface = gr.Interface(lambda x: x, "model3d", "model3d") input_data = gr.media_data.BASE64_MODEL3D["data"] output_data = (await iface([{"name": "Box.gltf", "data": input_data}]))[0][ "data" ] self.assertEqual(input_data.split(";")[1], output_data.split(";")[1]) class TestColorPicker(unittest.TestCase): def test_component_functions(self): """ Preprocess, postprocess, serialize, tokenize, generate_sample, get_config """ color_picker_input = gr.ColorPicker() self.assertEqual(color_picker_input.preprocess("#000000"), "#000000") self.assertEqual(color_picker_input.postprocess("#000000"), "#000000") self.assertEqual(color_picker_input.postprocess(None), None) self.assertEqual(color_picker_input.postprocess("#FFFFFF"), "#FFFFFF") self.assertEqual(color_picker_input.serialize("#000000", True), "#000000") color_picker_input.interpretation_replacement = "unknown" self.assertEqual( color_picker_input.get_config(), { "value": None, "show_label": True, "label": None, "style": {}, "elem_id": None, "visible": True, "interactive": None, "name": "colorpicker", }, ) self.assertIsInstance(color_picker_input.generate_sample(), str) async def test_in_interface_as_input(self): """ Interface, process, interpret, """ iface = gr.Interface(lambda x: x, "colorpicker", "colorpicker") self.assertEqual(await iface(["#000000"]), ["#000000"]) async def test_in_interface_as_output(self): """ Interface, process """ iface = gr.Interface(lambda x: x, "colorpicker", gr.ColorPicker()) self.assertEqual(await iface(["#000000"]), ["#000000"]) def test_static(self): """ postprocess """ component = gr.ColorPicker("#000000") self.assertEqual(component.get_config().get("value"), "#000000") @patch("uuid.uuid4", return_value="my-uuid") def test_gallery(mock_uuid): gallery = gr.Gallery() test_file_dir = pathlib.Path(pathlib.Path(__file__).parent, "test_files") data = [ gr.processing_utils.encode_file_to_base64( pathlib.Path(test_file_dir, "bus.png") ), gr.processing_utils.encode_file_to_base64( pathlib.Path(test_file_dir, "cheetah1.jpg") ), ] with tempfile.TemporaryDirectory() as tmpdir: path = gallery.deserialize(data, tmpdir) assert path.endswith("my-uuid") data_restored = gallery.serialize(path) assert sorted(data) == sorted(data_restored) @patch("gradio.Slider.get_random_value", return_value=7) def test_slider_get_random_value_on_load(mock_get_random_value): slider = gr.Slider(minimum=-5, maximum=10, randomize=True) assert slider.attach_load_event assert slider.value == 7 assert slider.load_fn() == 7 @patch("random.randint", return_value=3) def test_slider_rounds_when_using_default_randomizer(mock_randint): slider = gr.Slider(minimum=0, maximum=1, randomize=True, step=0.1) # If get_random_value didn't round, this test would fail # because 0.30000000000000004 != 0.3 assert slider.get_random_value() == 0.3 mock_randint.assert_called() def test_dataframe_postprocess_all_types(): df = pd.DataFrame( { "date_1": pd.date_range("2021-01-01", periods=2), "date_2": pd.date_range("2022-02-15", periods=2).strftime("%B %d, %Y, %r"), "number": np.array([0.2233, 0.57281]), "number_2": np.array([84, 23]).astype(np.int), "bool": [True, False], "markdown": ["# Hello", "# Goodbye"], } ) component = gr.Dataframe( datatype=["date", "date", "number", "number", "bool", "markdown"] ) output = component.postprocess(df) assert output == { "headers": list(df.columns), "data": [ [ pd.Timestamp("2021-01-01 00:00:00"), "February 15, 2022, 12:00:00 AM", 0.2233, 84, True, "

Hello

\n", ], [ pd.Timestamp("2021-01-02 00:00:00"), "February 16, 2022, 12:00:00 AM", 0.57281, 23, False, "

Goodbye

\n", ], ], } def test_dataframe_postprocess_only_dates(): df = pd.DataFrame( { "date_1": pd.date_range("2021-01-01", periods=2), "date_2": pd.date_range("2022-02-15", periods=2), } ) component = gr.Dataframe(datatype=["date", "date"]) output = component.postprocess(df) assert output == { "headers": list(df.columns), "data": [ [pd.Timestamp("2021-01-01 00:00:00"), pd.Timestamp("2022-02-15 00:00:00")], [pd.Timestamp("2021-01-02 00:00:00"), pd.Timestamp("2022-02-16 00:00:00")], ], } def test_audio_preprocess_can_be_read_by_scipy(): x_wav = deepcopy(media_data.BASE64_MICROPHONE) audio_input = gr.Audio(type="filepath") output = audio_input.preprocess(x_wav) wavfile.read(output) def test_video_postprocess_converts_to_playable_format(test_file_dir): # This file has a playable container but not playable codec with tempfile.NamedTemporaryFile(suffix="bad_video.mp4") as tmp_not_playable_vid: bad_vid = str(test_file_dir / "bad_video_sample.mp4") assert not processing_utils.video_is_playable(bad_vid) shutil.copy(bad_vid, tmp_not_playable_vid.name) _ = gr.Video().postprocess(tmp_not_playable_vid.name) # The original video gets converted to .mp4 format full_path_to_output = pathlib.Path(tmp_not_playable_vid.name).with_suffix( ".mp4" ) assert processing_utils.video_is_playable(str(full_path_to_output)) # This file has a playable codec but not a playable container with tempfile.NamedTemporaryFile( suffix="playable_but_bad_container.mkv" ) as tmp_not_playable_vid: bad_vid = str(test_file_dir / "playable_but_bad_container.mkv") assert not processing_utils.video_is_playable(bad_vid) shutil.copy(bad_vid, tmp_not_playable_vid.name) _ = gr.Video().postprocess(tmp_not_playable_vid.name) full_path_to_output = pathlib.Path(tmp_not_playable_vid.name).with_suffix( ".mp4" ) assert processing_utils.video_is_playable(str(full_path_to_output)) class TestState: def test_as_component(self): state = gr.State(value=5) assert state.preprocess(10) == 10 assert state.preprocess("abc") == "abc" assert state.stateful @pytest.mark.asyncio async def test_in_interface(self): def test(x, y=" def"): return (x + y, x + y) io = gr.Interface(test, ["text", "state"], ["text", "state"]) result = await io.call_function(0, ["abc"]) assert result["prediction"][0] == "abc def" result = await io.call_function(0, ["abc", result["prediction"][0]]) assert result["prediction"][0] == "abcabc def" @pytest.mark.asyncio async def test_in_blocks(self): with gr.Blocks() as demo: score = gr.State() btn = gr.Button() btn.click(lambda x: x + 1, score, score) result = await demo.call_function(0, [0]) assert result["prediction"] == 1 result = await demo.call_function(0, [result["prediction"]]) assert result["prediction"] == 2 @pytest.mark.asyncio async def test_variable_for_backwards_compatibility(self): with gr.Blocks() as demo: score = gr.Variable() btn = gr.Button() btn.click(lambda x: x + 1, score, score) result = await demo.call_function(0, [0]) assert result["prediction"] == 1 result = await demo.call_function(0, [result["prediction"]]) assert result["prediction"] == 2 def test_dataframe_as_example_converts_dataframes(): df_comp = gr.Dataframe() assert df_comp.as_example(pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]})) == [ [1, 5], [2, 6], [3, 7], [4, 8], ] assert df_comp.as_example(np.array([[1, 2], [3, 4.0]])) == [[1.0, 2.0], [3.0, 4.0]] @pytest.mark.parametrize("component", [gr.Model3D, gr.File]) def test_as_example_returns_file_basename(component): component = component() assert component.as_example("/home/freddy/sources/example.ext") == "example.ext" @patch("gradio.components.IOComponent.as_example") @patch("gradio.components.File.as_example") @patch("gradio.components.Dataframe.as_example") @patch("gradio.components.Model3D.as_example") def test_dataset_calls_as_example(*mocks): gr.Dataset( components=[gr.Dataframe(), gr.File(), gr.Image(), gr.Model3D()], samples=[ [ pd.DataFrame({"a": np.array([1, 2, 3])}), "foo.png", "bar.jpeg", "duck.obj", ] ], ) assert all([m.called for m in mocks]) if __name__ == "__main__": unittest.main()