import numpy as np import unittest import os from gradio import outputs import json PACKAGE_NAME = 'gradio' BASE64_IMG = "" class TestLabel(unittest.TestCase): def test_path_exists(self): out = outputs.Label() path = outputs.BASE_OUTPUT_INTERFACE_JS_PATH.format(out.__class__.__name__.lower()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) # def test_postprocessing_string(self): # string = 'happy' # out = outputs.Label() # label = json.loads(out.postprocess(string)) # self.assertDictEqual(label, {outputs.Label.LABEL_KEY: string}) # # def test_postprocessing_1D_array(self): # array = np.array([0.1, 0.2, 0, 0.7, 0]) # true_label = {outputs.Label.LABEL_KEY: 3, # outputs.Label.CONFIDENCES_KEY: [ # {outputs.Label.LABEL_KEY: 3, outputs.Label.CONFIDENCE_KEY: 0.7}, # {outputs.Label.LABEL_KEY: 1, outputs.Label.CONFIDENCE_KEY: 0.2}, # {outputs.Label.LABEL_KEY: 0, outputs.Label.CONFIDENCE_KEY: 0.1}, # ]} # out = outputs.Label() # label = json.loads(out.postprocess(array)) # self.assertDictEqual(label, true_label) # def test_postprocessing_1D_array_no_confidences(self): # array = np.array([0.1, 0.2, 0, 0.7, 0]) # true_label = {outputs.Label.LABEL_KEY: 3} # out = outputs.Label(show_confidences=False) # label = json.loads(out.postprocess(array)) # self.assertDictEqual(label, true_label) # # def test_postprocessing_int(self): # true_label_array = np.array([[[3]]]) # true_label = {outputs.Label.LABEL_KEY: 3} # out = outputs.Label() # label = json.loads(out.postprocess(true_label_array)) # self.assertDictEqual(label, true_label) class TestTextbox(unittest.TestCase): def test_path_exists(self): out = outputs.Textbox() path = outputs.BASE_OUTPUT_INTERFACE_JS_PATH.format(out.__class__.__name__.lower()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_postprocessing(self): string = 'happy' out = outputs.Textbox() string = out.postprocess(string) self.assertEqual(string, string) class TestImage(unittest.TestCase): def test_path_exists(self): out = outputs.Image() path = outputs.BASE_OUTPUT_INTERFACE_JS_PATH.format(out.__class__.__qualname__.lower()) self.assertTrue(os.path.exists(os.path.join(PACKAGE_NAME, path))) def test_postprocessing(self): string = BASE64_IMG out = outputs.Textbox() string = out.postprocess(string) self.assertEqual(string, string) if __name__ == '__main__': unittest.main()